Spectral decimation of the magnetic Laplacian on the Sierpinski gasket: Hofstadter's butterfly, determinants, and loop soup entropy

Joe P. Chen Ruoyu (Tony) Guo

Department of Mathematics Colgate University

2019 AMS Fall Eastern Sectional Meeting Special Session "Stochastic Evolution of Discrete Structures" Binghamton University, NY October 12, 2019

arXiv:1909.05662

The Sierpinski gasket (SG)

We denote SG on level N by $G_N = (V_N, E_N)$ where V_N is the vertex set, and E_N is the edge set.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The Sierpinski gasket (SG)

We denote SG on level N by $G_N = (V_N, E_N)$ where V_N is the vertex set, and E_N is the edge set.

Remark

• Let F_i be the contraction mappings for i = 0, 1, 2. Then the infinite SG is the unique nonempty compact set K such that

$$K = \bigcup_{i=0}^{2} F_i(K)$$

2
$$\#V_N = \frac{3^{N+1}+3}{2}$$

3 *SG* is self-similar

・ロン ・回と ・ヨン ・ ヨン

э

The combinatorial graph Laplacian

The combinatorial graph Laplacian of level 1 SG is $\Delta_G = D_G - A_G$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─目 − のへの

The magnetic Laplacian

We can normalize Δ_G by the degree to obtain the **probabilistic graph** Laplacian $\mathcal{L}_G = D_G^{-1} \Delta_G$, or

$$(\mathcal{L}_G u)(x) = \frac{1}{\deg_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The magnetic Laplacian

We can normalize Δ_G by the degree to obtain the **probabilistic graph** Laplacian $\mathcal{L}_G = D_G^{-1} \Delta_G$, or

$$(\mathcal{L}_G u)(x) = \frac{1}{\deg_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$

To obtain the magnetic Laplacian, We assign a set of unit complex values (complex line bundle) to replace the 1's in the adjacency matrix such that $\omega_{ij} = \omega_{ji}^{-1}$ for all *i*, *j* in V_N . The magnetic Laplacian on the level-*N* gasket graph G_N endowed with the set of weights ω is defined as

$$(\mathcal{L}_{N}^{\omega}u)(x) = \sum_{y \sim x} \frac{1}{\deg_{G_{N}}(x)}(u(x) - \omega_{xy}u(y)), \quad u \in \mathbb{C}^{V}$$

The magnetic Laplacian

We can normalize Δ_G by the degree to obtain the **probabilistic graph** Laplacian $\mathcal{L}_G = D_G^{-1} \Delta_G$, or

$$(\mathcal{L}_G u)(x) = \frac{1}{\deg_G(x)} \sum_{y \sim x} (u(x) - u(y)), \quad u \in \mathbb{R}^V$$

To obtain the magnetic Laplacian, We assign a set of unit complex values (complex line bundle) to replace the 1's in the adjacency matrix such that $\omega_{ij} = \omega_{ji}^{-1}$ for all *i*, *j* in V_N . The magnetic Laplacian on the level-*N* gasket graph G_N endowed with the set of weights ω is defined as

$$(\mathcal{L}_{N}^{\omega}u)(x) = \sum_{y \sim x} \frac{1}{\deg_{G_{N}}(x)}(u(x) - \omega_{xy}u(y)), \quad u \in \mathbb{C}^{V}$$

Remark

 \mathcal{L}_{N}^{ω} is self-adjoint on $L^{2}(V_{N}, \deg_{G_{N}})$, so it has real eigenvalues.

・ロト ・同ト ・ヨト ・ヨト ・ヨー シへぐ

Magnetic fluxes

Definition

The magnetic flux through each smallest upright (resp. downright) triangle on level N equals α_N (resp. β_N).

Suppose that the figure below is part of a level N SG:

・ 同 ト ・ ヨ ト ・ ヨ ト

Magnetic fluxes

Definition

The magnetic flux through each smallest upright (resp. downright) triangle on level N equals α_N (resp. β_N).

Suppose that the figure below is part of a level N SG:

Remark

Having uniform magnetic field over SG implies $\alpha_N = \beta_N$.

(本間) (本語) (本語) (語)

The magnetic spectrum

Question

What is the magnetic spectrum when SG is subject to uniform magnetic field?

Ruoyu Guo

= nar

¹ Bellissard, 1990; Ghez et. al, 1987

The magnetic spectrum

Question

What is the magnetic spectrum when SG is subject to uniform magnetic field?

Answer:¹

Ruoyu Guo

1 Bellissard, 1990; Ghez et. al, 1987

Sierpinski-Hofstadter problem

-

Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. '19)

$$\mathcal{L}_{N}^{(0,0)} \xrightarrow{\mathcal{R}(0,0,\cdot)} \mathcal{L}_{N-1}^{(0,0)} \xrightarrow{\mathcal{R}(0,0,\cdot)} \mathcal{L}_{N-2}^{(0,0)} \longrightarrow \cdots \longrightarrow \mathcal{L}_{0}^{(0,0)}$$

	$\sigma(\mathcal{L}_{N}^{(lpha,eta)})$	Respective multiplicity
$(\alpha,\beta)=(0,0)^2$	$(0, \frac{3}{2}, R(0, 0, \cdot))^{-k}(\frac{3}{4}), R(0, 0, \cdot))^{-k}(\frac{5}{4})$	$1, \frac{3^{N}+3}{2}, \frac{3^{N-k-1}+3}{2}, \frac{3^{N-k-1}-1}{2}$
$(\alpha,\beta)=(\frac{1}{2},\frac{1}{2})$	$\left(egin{array}{c} rac{1}{2},rac{3}{4},rac{5}{4},2,\ \left(R\left(rac{1}{2},rac{1}{2},rac{1}{2},\cdot ight) ight)^{-1}(R_{1}\cup R_{2}) \end{array} ight)$	$\frac{\frac{3^{N}+3}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, 1,}{\frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, $
$(\alpha,\beta)=(rac{1}{2},0)$	$ \frac{\frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1}\left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right), \\ \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1} \circ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right)\right)^{-1} \left(R_3 \cup R_4\right) $	$\frac{\frac{3^{N}+3}{2},1,\frac{3^{N-1}-1}{2},\frac{3^{N}-$
$(\alpha,\beta)=(0,\frac{1}{2})$	$ \begin{array}{c} \left\{\frac{1}{4},\frac{3}{4},1,\frac{3}{2}\right\}, \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1}\left(\left\{\frac{3}{4},\frac{5}{4}\right\}\right)\\ \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1} \circ \left(R\left(\frac{1}{2},\frac{1}{2},\cdot\right)\right)^{-1} \left(R_{3} \cup R_{4}\right) \end{array} $	$\frac{\frac{3^{N-1}+3}{2},\frac{3^{N-1}-1}{2},1,\frac{3^{N}+3}{2},\frac{3^{N-2}-1}{2},}{\frac{3^{N}-k-3}+3},\frac{3^{N}+3}{2},\frac{3^{N-2}-1}{2},$

where
$$R_1 = \bigcup_{k=0}^{N-2} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_2 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$$

 $R_3 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_4 = \bigcup_{k=0}^{N-4} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$

Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. '19)

$$\mathcal{L}_{N}^{(0,0)} \xrightarrow{R(0,0,\cdot)} \mathcal{L}_{N-1}^{(0,0)} \xrightarrow{R(0,0,\cdot)} \mathcal{L}_{N-2}^{(0,0)} \longrightarrow \mathcal{L}_{0}^{(0,0)}$$

$$\mathcal{L}_{N}^{(\frac{1}{2},\frac{1}{2},\cdot)} \xrightarrow{R(\frac{1}{2},\frac{1}{2},\cdot)} \mathcal{L}_{N-1}^{(\frac{1}{2},\frac{1}{2},\cdot)} \xrightarrow{R(0,0,\cdot)} \mathcal{L}_{0}^{(0,0)}$$

	$\sigma(\mathcal{L}_{N}^{(\alpha,\beta)})$	Respective multiplicity
$(\alpha,\beta)=(0,0)^2$	$0, \frac{3}{2}, R(0, 0, \cdot))^{-k}(\frac{3}{4}), R(0, 0, \cdot))^{-k}(\frac{5}{4})$	$1, \frac{3^{N}+3}{2}, \frac{3^{N-k-1}+3}{2}, \frac{3^{N-k-1}-1}{2}$
$(\alpha,\beta)=(\frac{1}{2},\frac{1}{2})$	$ \begin{array}{c} \frac{1}{2}, \frac{3}{4}, \frac{5}{4}, 2, \\ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right) \right)^{-1} \left(R_1 \cup R_2 \right) \end{array} $	$\frac{\frac{3^{N}+3}{2},\frac{3^{N-1}-1}{2},\frac{3^{N-1}+3}{2},\frac{3^{N-1}+3}{2},\frac{3^{N-1}+3}{2},1}{\frac{3^{N-1}+3}{2},\frac{3^{N-1}$
$(\alpha,\beta)=(rac{1}{2},0)$	$ \frac{\frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1}\left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right), \\ \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1} \circ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right)\right)^{-1} (R_3 \cup R_4) $	$\frac{\frac{3^{N}+3}{2},1,\frac{3^{N-1}-1}{2},\frac{3^{N}-1}{2},\frac{3^{N}-1}{2},\frac{3^{N}-2}{2},\frac{3^{N}-$
$(\alpha,\beta)=(0,\frac{1}{2})$	$ \begin{array}{c} \left\{\frac{1}{4}, \frac{3}{4}, 1, \frac{3}{2}\right\}, \left(R\left(0, \frac{1}{2}, \cdot\right)\right)^{-1} \left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right) \\ \left(R\left(0, \frac{1}{2}, \cdot\right)\right)^{-1} \circ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right)\right)^{-1} \left(R_3 \cup R_4\right) \end{array} $	$\frac{\frac{3^{N-1}+3}{2}, \frac{3^{N-1}-1}{2}, 1, \frac{3^{N}+3}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N-k-3}+3}{2}, \frac{3^{N-k-3}-1}{2}, \frac{3^{N-k-3}-1}{2}}{3^{N-k-3}-1}$

where
$$R_1 = \bigcup_{k=0}^{N-2} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_2 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$$

 $R_3 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_4 = \bigcup_{k=0}^{N-4} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$

 2 $R(\alpha, \beta, \lambda)$ is the decimation function, $k = \{0, 1, \dots N - 1\}$, Fukushima & Shima 1992 $\Rightarrow A = 0$

Case I: magnetic spectrum under (half-) integer flux, $\alpha, \beta \in \{0, \frac{1}{2}\}$ (Chen–G. '19)

	$\sigma(\mathcal{L}_{N}^{(\alpha,\beta)})$	Respective multiplicity
$(\alpha,\beta)=(0,0)^2$	$0, \frac{3}{2}, R(0, 0, \cdot))^{-k}(\frac{3}{4}), R(0, 0, \cdot))^{-k}(\frac{5}{4})$	$1, \frac{3^{N}+3}{2}, \frac{3^{N-k-1}+3}{2}, \frac{3^{N-k-1}-1}{2}$
$(\alpha,\beta)=(\frac{1}{2},\frac{1}{2})$	$egin{array}{c} rac{1}{2},rac{3}{4},rac{5}{4},2,\ \left(R\left(rac{1}{2},rac{1}{2},rac{1}{2},\cdot ight) ight) ^{-1}(R_{1}\cup R_{2}) \end{array}$	$\frac{\frac{3^{N}+3}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, \frac{1}{2}}{2}$
$(\alpha,\beta)=(rac{1}{2},0)$	$ \begin{array}{c} \frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1}\left(\left\{\frac{3}{4}, \frac{5}{4}\right\}\right), \\ \left(R\left(\frac{1}{2}, 0, \cdot\right)\right)^{-1} \circ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right)\right)^{-1} \left(R_3 \cup R_4\right) \end{array} $	$\begin{bmatrix} \frac{3N+3}{2}, 1, \frac{3N-1-1}{2}, \frac{3N-1+3}{2}, \frac{3N-2-1}{2}, \\ \frac{3N-2+3}{2}, \frac{3N-k-3+3}{2}, \frac{3N-k-3-1}{2} \end{bmatrix}$
$(\alpha,\beta)=(0,\frac{1}{2})$	$ \begin{array}{c} \left\{\frac{1}{4},\frac{3}{4},1,\frac{3}{2}\right\}, \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1}\left(\left\{\frac{3}{4},\frac{5}{4}\right\}\right)\\ \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1}\circ\left(R\left(\frac{1}{2},\frac{1}{2},\cdot\right)\right)^{-1}\left(R_{3}\cup R_{4}\right) \end{array} $	$\frac{\frac{3^{N-1}+3}{2}, \frac{3^{N-1}-1}{2}, 1, \frac{3^{N}+3}{2}, \frac{3^{N-2}-1}{2}, }{\frac{3^{N-2}+3}{2}, \frac{3^{N}+3}{2}, \frac{3^{N-2}-1}{2}, }$

where
$$R_1 = \bigcup_{k=0}^{N-2} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_2 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$$

 $R_3 = \bigcup_{k=0}^{N-3} (R(0,0,\cdot))^{-k} \left(\frac{3}{4}\right) \quad R_4 = \bigcup_{k=0}^{N-4} (R(0,0,\cdot))^{-k} \left(\frac{5}{4}\right)$

 2 $R(\alpha, \beta, \lambda)$ is the decimation function, $k = \{0, 1, \cdots N - 1\}$, Fukushima & Shima 1992 $\Rightarrow \forall A = 0$

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen-G. '19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the exceptional set for spectral decimation. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\sigma\left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})}\right) = \left\{\lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_{N},\beta_{N}) : R(\alpha_{N},\beta_{N},\lambda) \in \sigma\left(\mathcal{L}_{N-1}^{(\alpha_{N-1},\beta_{N-1})}\right)\right\}$$
$$\sqcup \left\{\lambda : \mathcal{D}(\beta_{N},\lambda) = 0, \text{ mult } \left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})},\lambda\right) > 0\right\} \sqcup \left\{\begin{array}{c}\frac{3}{2}, & \text{if } \alpha_{N} = 0\\ \frac{1}{2}, & \text{if } \alpha_{N} = \frac{1}{2}\end{array}\right\},$$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Spectral decimation

Spectral decimation is a process in which we project the eigenspace of \mathcal{L}_N^{ω} to that of $\mathcal{L}_{N-1}^{\Omega}$. We do so by computing the Schur complement

Schur complement

Define the **Schur complement** of $\mathcal{L}_N^\omega - \lambda I$ with respect to the minor $D - \lambda I$ as

$$S_N^{\omega}(\lambda) := (A - \lambda I) - B(D - \lambda I)^{-1}C,$$

where

$$\begin{split} A &: \ell(V_{N-1}) \to \ell(V_{N-1}), \\ B &: \ell(V_N \setminus V_{N-1}) \to \ell(V_{N-1}), \\ C &: \ell(V_{N-1}) \to \ell(V_N \setminus V_{N-1}), \\ D &: \ell(V_N \setminus V_{N-1}) \to \ell(V_N \setminus V_{N-1}), \\ S_N^{\omega}(\lambda) &: \ell(V_{N-1}) \to \ell(V_{N-1}) \end{split}$$

and make the connection by writing

$$S_N^{\omega}(\alpha,\beta,\lambda) = \phi(\alpha,\beta,\lambda)(\mathcal{L}_{N-1}^{\Omega} - R(\alpha,\beta,\lambda)). \qquad \lambda \in \mathbb{C},$$

Then, \mathcal{L}_{N}^{ω} and $\mathcal{L}_{N-1}^{\Omega}$ are said to be spectrally similar, and if $\lambda \notin \mathcal{E}(\alpha_{N}, \beta_{N})$, then

$$\lambda \in \sigma(\mathcal{L}_{N}^{\omega}) \Leftrightarrow R(\alpha_{N}, \beta_{N}, \lambda) \in \sigma(\mathcal{L}_{N-1}^{\Omega})$$

Spectral decimation

Recall that we write

$$S_N^{\omega}(\alpha,\beta,\lambda) = \phi(\alpha,\beta,\lambda)(\mathcal{L}_{N-1}^{\Omega} - R(\alpha,\beta,\lambda))$$

and if $\lambda \notin \mathcal{E}(\alpha_N, \beta_N)$, then

$$\lambda \in \sigma(\mathcal{L}_N^{\omega}) \Leftrightarrow R(\lambda) \in \sigma(\mathcal{L}_{N-1}^{\Omega})$$

Computations

$$\begin{split} R(\alpha, \beta, \lambda) &= 1 + \frac{A(\alpha, \beta, \lambda) - 64\mathcal{D}(\beta, \lambda)(1 - \lambda)}{16|\Psi(\alpha, \beta, \lambda)|}, \\ \phi(\alpha, \beta, \lambda) &= \frac{|\Psi(\alpha, \beta, \lambda)|}{4\mathcal{D}(\beta, \lambda)}, \\ A(\alpha, \beta, \lambda) &= 16\lambda^2 - (32 + 4\cos(2\pi\alpha))\lambda + 15 + 4\cos(2\pi\alpha) + \cos(2\pi(\alpha + \beta))), \\ \mathcal{D}(\beta, \lambda) &= -\lambda^3 + 3\lambda^2 - \frac{45}{16}\lambda + \frac{13}{16} - \frac{1}{32}\cos(2\pi\beta), \\ \Psi(\alpha, \beta, \lambda) &= (1 - \lambda)^2 - \frac{1}{16} + \frac{1 - \lambda}{4}(2e^{-2\pi i\alpha} + e^{-2\pi i(2\alpha + \beta)}) \\ &\quad + \frac{1}{16}(e^{-4\pi i\alpha} + 2e^{-2\pi i(\alpha + \beta)}), \\ \mathcal{E}(\alpha, \beta) &= \{\lambda \in \mathbb{R} : \Psi(\alpha, \beta, \lambda) = 0 \text{ or } \mathcal{D}(\beta, \lambda) = 0\} \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Flux changes in spectral decimation

 $\Omega_{\mathbf{a}_{1}\mathbf{a}_{2}}(\alpha,\beta,\lambda) = \omega_{\mathbf{a}_{1}b_{0}}\omega_{b_{0}\mathbf{a}_{2}}e^{2\pi i\theta(\alpha,\beta,\lambda)}$

Therefore,

$$\begin{aligned} \theta(\alpha,\beta,\lambda) &= \frac{\arg \Psi(\alpha,\beta,\lambda)}{2\pi} \qquad (\arg:\mathbb{C}\to[0,2\pi)),\\ \alpha_{N-1} &= \alpha_{\downarrow}(\alpha_{N},\beta_{N},\lambda) \quad \text{and} \quad \beta_{N-1} &= \beta_{\downarrow}(\alpha_{N},\beta_{N},\lambda),\\ \alpha_{\downarrow}(\alpha,\beta,\lambda) &= 3\alpha + \beta - 3\theta(\alpha,\beta,\lambda) \quad (\text{mod } 1),\\ \beta_{\downarrow}(\alpha,\beta,\lambda) &= 3\beta + \alpha + 3\theta(\alpha,\beta,\lambda) \quad (\text{mod } 1) \end{aligned}$$

3-parameter non-rational function

$$\mathcal{U}(\alpha,\beta,\lambda) = (3\alpha + \beta - 3\theta, 3\beta + \alpha + 3\theta, R(\alpha,\beta,\lambda))$$

▲□ → ▲ 三 → ▲ 三 → …

æ

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen-G. '19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the exceptional set for spectral decimation. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\sigma\left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})}\right) = \left\{\lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_{N},\beta_{N}) : R(\alpha_{N},\beta_{N},\lambda) \in \sigma\left(\mathcal{L}_{N-1}^{(\alpha_{N-1},\beta_{N-1})}\right)\right\}$$
$$\sqcup \left\{\lambda : \mathcal{D}(\beta_{N},\lambda) = 0, \text{ mult } \left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})},\lambda\right) > 0\right\} \sqcup \left\{\begin{array}{c}\frac{3}{2}, & \text{if } \alpha_{N} = 0\\ \frac{1}{2}, & \text{if } \alpha_{N} = \frac{1}{2}\end{array}\right\},$$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

The exceptional set for spectral decimation

Question (Bellissard, 1990)

Is the dynamical spectrum equal to the actual spectrum of the original operator? This is a question with no answer yet.

・ 同 ト ・ ヨ ト ・ ヨ ト

The exceptional set for spectral decimation

Question (Bellissard, 1990)

Is the dynamical spectrum equal to the actual spectrum of the original operator? This is a question with no answer yet.

Recall that we write

$$S_{N}^{\omega}(\alpha,\beta,\lambda) = \phi(\alpha,\beta,\lambda)(\mathcal{L}_{N-1}^{\Omega} - R(\alpha,\beta,\lambda)), \quad \phi(\alpha,\beta,\lambda) = \frac{|\Psi(\alpha,\beta,\lambda)|}{4\mathcal{D}(\beta,\lambda)}$$
$$S_{N}^{\omega}(\alpha,\beta,\lambda) = (A-\lambda I) - B(D-\lambda I)^{-1}C,$$

so naturally,

$$\mathcal{E}(\alpha,\beta) = \{\lambda \in \mathbb{R} : \Psi(\alpha,\beta,\lambda) = 0 \text{ or } \mathcal{D}(\beta,\lambda) = 0\}$$

Given any fluxes α and β , the exceptional set (for spectral decimation of \mathcal{L}_N^{ω}) $\mathcal{E}(\alpha, \beta)$ consists of:

- The three zeros of $\mathcal{D}(\beta, \cdot)$; and
- The corresponding values x in the table below if any of the conditions in the first column is met.

Condition	Value x to be added to $\mathcal{E}(lpha,eta)$	
$\alpha = 0$	$\frac{3}{2}$	
$\alpha = \frac{1}{2}$	1/2	
$3\alpha + \beta = \frac{1}{2} \pmod{1}$	$1+\frac{1}{2}\cos(2\pi\alpha)$	

where $\mathcal{D}(\beta,\lambda) = -\lambda^3 + 3\lambda^2 - \frac{45}{16}\lambda + \frac{13}{16} - \frac{1}{32}\cos(2\pi\beta).$

Additional analysis on the exceptional set

$$\mathcal{E}(\alpha,\beta) = \{\lambda \in \mathbb{R} : \Psi(\alpha,\beta,\lambda) = 0 \text{ or } \mathcal{D}(\beta,\lambda) = 0\}$$

<u>Case I</u>: $\alpha, \beta \in \{0, \frac{1}{2}\}$. Spectral decimation can be carried out explicitly.

<u>Case II</u>: Only one of α and β is in $\{0, \frac{1}{2}\}$. There is only one \mathbb{R} -valued zero of $\Psi(\alpha, \beta, \cdot)$.

<u>Case III</u>: $3\alpha + \beta = \frac{1}{2} \pmod{1}$, excluding flux values already discussed in Cases I & II. There is only one \mathbb{R} -valued zero of $\Psi(\alpha, \beta, \cdot)$.

<u>Case IV</u>: The remaining case. There are no \mathbb{R} -valued zeros of $\Psi(\alpha, \beta, \cdot)$.

There is a standard way to analyze the exceptional set using complex analysis.³ However, it is necessary to use real analysis in our case.

Ruoyu Guo

³ Bajorin et. al, 2008 -

$$\mathcal{E}(\alpha,\beta) = \{\lambda \in \mathbb{R} : \Psi(\alpha,\beta,\lambda) = 0 \text{ or } \mathcal{D}(\beta,\lambda) = 0\}$$

<u>Case I</u>: $\alpha, \beta \in \{0, \frac{1}{2}\}$. Spectral decimation can be carried out explicitly. <u>Case II</u>: Only one of α and β is in $\{0, \frac{1}{2}\}$. There is only one \mathbb{R} -valued zero of $\Psi(\alpha, \beta, \cdot)$.

<u>Case III</u>: $3\alpha + \beta = \frac{1}{2} \pmod{1}$, excluding flux values already discussed in Cases I & II. There is only one \mathbb{R} -valued zero of $\Psi(\alpha, \beta, \cdot)$.

<u>Case IV</u>: The remaining case. There are no \mathbb{R} -valued zeros of $\Psi(\alpha, \beta, \cdot)$.

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen–G. '19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the exceptional set for spectral decimation. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\sigma\left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})}\right) = \left\{\lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_{N},\beta_{N}) : R(\alpha_{N},\beta_{N},\lambda) \in \sigma\left(\mathcal{L}_{N-1}^{(\alpha_{N-1},\beta_{N-1})}\right)\right\}$$
$$\sqcup \left\{\lambda : \mathcal{D}(\beta_{N},\lambda) = 0, \text{ mult } \left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})},\lambda\right) > 0\right\} \sqcup \left\{\begin{array}{c}\frac{3}{2}, \text{ if } \alpha_{N} = 0\\ \frac{1}{2}, \text{ if } \alpha_{N} = \frac{1}{2}\end{array}\right\},$$

ロト・「御子・王王・王王・王王

Magnetic spectra

Theorem: Magnetic spectra under non-(half-)integer fluxes (Chen-G. '19)

Let $\mathcal{E}(\alpha_N, \beta_N)$ be the exceptional set for spectral decimation. Suppose not both of α_N and β_N are in $\{0, \frac{1}{2}\}$. Then

$$\begin{split} \sigma\left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})}\right) &= \left\{\lambda \in \mathbb{R} \setminus \mathcal{E}(\alpha_{N},\beta_{N}) : \mathcal{R}(\alpha_{N},\beta_{N},\lambda) \in \sigma\left(\mathcal{L}_{N-1}^{(\alpha_{N}-1,\beta_{N}-1)}\right)\right\} \\ & \sqcup \left\{\lambda : \mathcal{D}(\beta_{N},\lambda) = 0, \ \text{mult}\left(\mathcal{L}_{N}^{(\alpha_{N},\beta_{N})},\lambda\right) > 0\right\} \sqcup \left\{\begin{array}{c} \frac{3}{2}, & \text{if } \alpha_{N} = 0\\ \frac{1}{2}, & \text{if } \alpha_{N} = \frac{1}{2} \end{array}\right\}, \end{split}$$

Theorem: Magnetic spectra under (half-) integer fluxes (Chen-G. '19)

(α, β)	$\sigma(\mathcal{L}_{N}^{(lpha,eta)})$	Respective multiplicity
(0,0)*	$(0, \frac{3}{2}, R(0, 0, \cdot))^{-k}(\frac{3}{4}), R(0, 0, \cdot))^{-k}(\frac{5}{4})$	$1, \frac{3^{N}+3}{2}, \frac{3^{N}-k-1}{2}, \frac{3^{N}-k-1}{2}$
$\left(\frac{1}{2},\frac{1}{2}\right)$	${{1\over 2},{3\over 4},{5\over 4},2,\over \left(R\left({1\over 2},{1\over 2},\cdot ight) ight)^{-1}\left(R_1\cup R_2 ight)}$	$\frac{\frac{3^{N}+3}{2}, \frac{3^{N-1}-1}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-1}+3}{2}, \frac{3^{N-2}+3}{2}, \frac{3^{N-2}+3}{2}}{2}$
$(\frac{1}{2}, 0)$	$ \begin{array}{c} \frac{1}{2}, 1, \frac{5}{4}, \frac{7}{4}, \left(R\left(\frac{1}{2}, 0, \cdot\right) \right)^{-1}\left(\left\{ \frac{3}{4}, \frac{5}{4} \right\} \right), \\ \left(R\left(\frac{1}{2}, 0, \cdot\right) \right)^{-1} \circ \left(R\left(\frac{1}{2}, \frac{1}{2}, \cdot\right) \right)^{-1} \left(R_3 \cup R_4 \right) \end{array} $	$\frac{\frac{3^{N}+3}{2},1}{\frac{3^{N}-2}{2},\frac{3^{N}-1-1}{2},\frac{3^{N}-1+3}{2},\frac{3^{N}-2-1}{2},\frac{3^{N}-2}{2},3$
$(0, \frac{1}{2})$	$ \begin{array}{c} \left\{\frac{1}{4},\frac{3}{4},1,\frac{3}{2}\right\}, \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1}\left(\left\{\frac{3}{4},\frac{5}{4}\right\}\right)\\ \left(R\left(0,\frac{1}{2},\cdot\right)\right)^{-1}\circ\left(R\left(\frac{1}{2},\frac{1}{2},\cdot\right)\right)^{-1}\left(R_{3}\cup R_{4}\right) \end{array} $	$\frac{\frac{3^{N-1}+3}{2}, \frac{3^{N-1}-1}{2}, 1, \frac{3^{N}+3}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N}+3}{2}, \frac{3^{N-2}-1}{2}, \frac{3^{N}-3^{N}-3^{N}-1}{2}, \frac{3^{N}-3^{N$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Determinants

Determinants of the magnetic Laplacian under (half-) integer fluxes (Chen-G. '19)

$$det(\mathcal{L}_{N}^{(\frac{1}{2},\frac{1}{2})}) = \frac{1}{\kappa(G_{N})} \cdot 2\frac{3^{N}}{2} + \frac{3}{2} \cdot 3\frac{3^{N-1}}{2} - N - \frac{3}{2} \cdot 5\frac{3^{N-1}}{2} + \frac{3}{2}$$
$$\times \left[\prod_{k=0}^{N-2} \left(H(k) + \frac{1}{2}\right)^{\frac{3^{N-k-2}+3}{2}}\right] \left[\prod_{k=0}^{N-3} \left(H(k) + \frac{5}{2}\right)^{\frac{3^{N-k-2}-1}{2}}\right],$$

where H(0) = 26.5, and for $k \ge 1$, $H(k) = [H(k-1)]^2 - \frac{15}{4}$.

$$\det(\mathcal{L}_{N}^{(\frac{1}{2},0)}) = \frac{1}{\kappa(G_{N})} \cdot 2^{\frac{13}{6}3^{N-1} - \frac{5}{2}} \cdot 3^{\frac{3^{N-2}}{2} - N - \frac{3}{2}} \cdot 5^{\frac{5}{2}3^{N-2} - 1} \cdot 7^{\frac{3^{N-1}}{2} + \frac{3}{2}} \cdot 17^{\frac{3^{N-2}}{2} + \frac{3}{2}} \times \left[\prod_{k=0}^{N-3} \left(\tilde{H}(k) + \frac{1}{2}\right)^{\frac{3^{N-k-3} + 3}{2}}\right] \left[\prod_{k=0}^{N-4} \left(\tilde{H}(k) + \frac{5}{2}\right)^{\frac{3^{N-k-3} - 1}{2}}\right],$$

where $\tilde{H}(0) = 302.5$, and for $k \ge 1$, $\tilde{H}(k) = [\tilde{H}(k-1)]^2 - \frac{15}{4}$.

$$\det(\mathcal{L}_{N}^{(0,\frac{1}{2})}) = \frac{1}{\kappa(G_{N})} \cdot 2^{\frac{13}{6}3^{N-1} - \frac{5}{2}} \cdot 3^{\frac{7}{3}3^{N-1} - N+3} \cdot 7^{\frac{3N-2}{2} - \frac{1}{2}} \\ \times \left[\prod_{k=0}^{N-3} \left(\hat{H}(k) + \frac{1}{2}\right)^{\frac{3^{N-k-3}+3}{2}}\right] \left[\prod_{k=0}^{N-4} \left(\hat{H}(k) + \frac{5}{2}\right)^{\frac{3^{N-k-3}-1}{2}}\right]$$

where $\hat{H}(0) = 86.5$, and for $k \ge 1$, $\hat{H}(k) = [\hat{H}(k-1)]^2 - \frac{15}{4}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Loop soup entropy

A cycle-rooted spanning forest (CRSF) is a spanning forest whose connected components are unicycles (a tree plus an edge to form a single cycle). Matrix-CRSF Theorem⁴: Let $\mathcal{L}^{\omega}_{(\mathcal{G},c)}$ be the line bundle Laplacian, then

$$\det \left(\mathcal{L}^{\omega}_{(\mathcal{G}, \mathbf{c})} \right) = \sum_{\mathrm{OCRSFs}} \prod_{e \in \mathrm{bushes}} \mathbf{c}(e) \prod_{\gamma \in \mathrm{cycles}} \mathbf{C}(\gamma) \left(1 - \omega(\gamma) \right).$$

Asymptotic complexity (tree entropy⁵):

$$\mathfrak{h}(G_{\infty},\mathcal{L}_{\infty}^{\omega}):=\lim_{N\to\infty}\frac{\log\left(\kappa(G_{N})\det(\mathcal{L}_{N}^{\omega})\right)}{|V_{N}|}$$

Loop soup entropy:

$$\mathfrak{h}_{ ext{loop}}(\textit{G}_{\infty}, \mathcal{L}^{\omega}_{\infty}) := \mathfrak{h}(\textit{G}_{\infty}, \mathcal{L}^{\omega}_{\infty}) - \mathfrak{h}(\textit{G}_{\infty}, \mathcal{L}^{ ext{Id}}_{\infty}).$$

Probabilistic interpretation:

$$\lim_{N \to \infty} \lim_{c \downarrow 0} \frac{1}{|V_N|} \log \mathbb{P}_{N,c}^{(\alpha,\beta)} \left[\text{no loops} \right] = -\mathfrak{h}_{\text{loop}}(SG, \mathcal{L}_{\infty}^{(\alpha,\beta)})$$

⁴ Kenyon, 2011

⁵ Lyons, 2005

Thank you for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト

≡ nar