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Random walks and electric networks

Let G = (V ,E) be a locally finite connected graph, and c = {cxy}xy∈E be the set of positive
weights (conductances) endowed on E .

The (symmetric) random walk process on the weighted graph (=electric network) (G , c) is
an irreducible Markov chain on V with transition probability

P(x , y) =

{
cxy/cx , if xy ∈ E ,
0, otherwise.

cx :=
∑

z:xz∈E
cxz .

The RW process has π(·) ∝ c(·) as reversible (invariant) measure, and the associated
Dirichlet energy is

ERW(f ) = 〈f , (I− P)f 〉π =
∑
zw∈E

czw [f (z)− f (w)]2, f : V → R.
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(The entries along each row must add up to 1.)
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Random walks and electric networks

Let G = (V ,E) be a locally finite connected graph, and c = {cxy}xy∈E be the set of positive
weights (conductances) endowed on E .

The (symmetric) random walk process on the weighted graph (=electric network) (G , c) is
an irreducible Markov chain on V with transition probability

P(x , y) =

{
cxy/cx , if xy ∈ E ,
0, otherwise.

cx :=
∑

z:xz∈E
cxz .

The RW process has π(·) ∝ c(·) as reversible (invariant) measure, and the associated
Dirichlet energy is

ERW(f ) = 〈f , (I− P)f 〉π =
∑
zw∈E

czw [f (z)− f (w)]2, f : V → R.

Effective resistance between A,B ⊂ V :

Reff(A,B) = sup

{
[ERW(f )]−1

∣∣∣∣ f : V → R, f |A = 1, f |B = 0

}
In particular, if A = {x} and B = {y} we write Reff(x , y). By definition,

[f (x)− f (y)]2 ≤ Reff(x , y)ERW(f ), f : V → R.

Also Reff : V × V → R+ is a metric on V .
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Interacting particle systems on an electric network

→ → → · · ·

Overarching question: Can we study Markov processes involving MANY interacting “random
walkers” on a weighted graph (G , c)?

Mathematical development started with Spitzer (on the integer lattice).
Mathematically tractable models:

1 Exclusion process (state space {0, 1}V ): Particles perform RWs subject to the exclusion
constraint that no two particles can occupy the same vertex at any time.

2 Zero-range process (state space NV
0 ): Particle at x jumps to neighboring y at rate

depending on P(x , y) [jump] and the number of particles at x ONLY [zero-range kinetics].

Both models are associated with a conserved quantity—the total # of particles (unless additional

dynamics or “reservoirs” are attached).
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Particle system #1: Exclusion process

1
2

1
2 ×

The (symm.) exclusion process on (G , c) is a Markov chain on {0, 1}V with generator

(LEXf )(η) =
∑
xy∈E

cxy (∇xy f )(η). f : {0, 1}V → R,

where (∇xy f )(η) := f (ηxy )− f (η) and (ηxy )(z) =

 η(y), if z = x ,
η(x), if z = y ,
η(z), otherwise.

Each product Bernoulli measure να, α ∈ [0, 1], with marginal να{η : η(x) = 1} = α for each
x ∈ V , is an invariant measure.

Dirichlet energy: EEX(f ) =
1

2

∑
zw∈E

czw

∫
{0,1}V

[(∇xy f )(η)]2 dνα(η) .
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Particle system #2: Zero-range process

P(x,x−1)g(x,3) P(x,x+1)g(x,3)

The zero-range process on (G , c) is a Markov chain on NV
0 with generator

(LZRf )(ξ) =
∑

(x,y)∈V 2

P(x , y)g(x , ξ(x)) [f (ξ + 1y − 1x )− f (ξ)] , f : NV
0 → R.

where P is an irreducible jump Markov matrix on V 2, and g : V × N0 → R+ is the kinetic rate,
g(x , 0) = 0 always.

Invariant measure is a product one: µ(ξ) =
1

Z

∏
x∈V

ξ(x)∏
k=1

π(x)

g(x , k)
, where π is the invariant

measure for P.

Dirichlet energy: EZR(f ) = 〈f ,−LZRf 〉µ.
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Hierarchy of stochastic processes on a fixed graph

1

2
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1
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Interchange process f : {Permutations on V} → R
EIP(f ) =

∫
1

2

∑
zw∈E

czw [f (ηzw )− f (η)]2 dν(η).

Reversible measure: uniform measure ν on {Perms on V}.

↓ PROJECTION ↓

→

Exclusion process f : {0, 1}V → R
EEX(f ) =

∫
1

2

∑
zw∈E

czw [f (ηzw )− f (η)]2 dνα(η).

Reversible measure: product Bernoulli measure να, α ∈ [0, 1],
να{η : η(x) = 1} = α for all x ∈ V .

↓ PROJECTION ↓

→

Random walk process f : V → R
ERW(f ) =

∑
zw∈E

czw [f (z)− f (w)]2
.

Reversible measure: c(·) =
∑
w∼·

cw·.

Aldous’ spectral gap conjecture ’92: Is λEX
2 (G) = λRW

2 (G)?

A projection argument easily leads to: λRW
2 (G) ≥ λEX

2 (G) ≥ λIP
2 (G).

For the other direction, suffice to prove that λIP
2 (G) ≥ λRW

2 (G).
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Random walks, electric networks,
moving particle lemma, and hydrodynamic limits
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Caputo, Liggett, and Richthammer, J. Amer. Math. Soc. (2010).

C., Electron. Commun. Probab. (2017).
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Hierarchy of stochastic processes on a fixed graph

1

2

3 4

5 →

1

5

3 4

2
Interchange process f : {Permutations on V} → R
1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff (x, y)EIP(f ).

Moving particle lemma

↓ PROJECTION ↓

→
Exclusion process f : {0, 1}V → R
1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff (x, y)EEX(f ).

Moving particle lemma

↓ PROJECTION ↓

→
Random walk process f : V → R
[f (x)− f (y)]2 ≤ Reff (x, y)ERW(f ).
Dirichlet principle
(Also a dual version involving flows: Thomson principle)

Energy inequalities
Does the MPL follow trivially from the Dirichlet principle? NO!
However, a common idea is electric network reduction (Schur complementation in linear algebra).
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Network reduction: an exercise in Schur complements

→

Idea: Remove vertices (and edges attached to them) without changing the effective conductance between any
of the non-removed vertices.

Suppose we remove the vertex x ∈ V from (G , c), as well as the edges attached to x .

Call the reduced graph Gx = (Vx , Ex ).

In the linear algebra language, we will reduce the Laplacian L = I− P to a new Laplacian L′ (of one fewer
dimension).

This is attained by taking the Schur complement of the (x, x) block in L:

If L =

[
X Y
Z Lxx

]
, then L′ = X− Y(Lxx )−1Z = X− YZ. (Recall Lxx = 1.)

In component form, L′yz = Lyz − LyxLxz for y , z ∈ Vx .

Since L(‘)
yz = −p(‘)

yz = − c
(‘)
yz
cy

whenever y 6= z, we see that the new conductances on Ex become

c′yz = −cyL′yz = −cy (Lyz − LyxLxz ) = cyz +
cyxcxz

cx
=: cyz + c̃yz .
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Example 1: Series Law

y x z y z

Let cxy = α and cxz = β.

P =

 0 0 1
0 0 1
α
α+β

β
α+β

0

 , L =

 1 0 −1
0 1 −1

− α
α+β

− β
α+β

1

 .
Let L′ be the Schur complement of the 1 block in L:

L′ =

[
1 0
0 1

]
−
[
−1
−1

] [
− α
α+β

− β
α+β

]
=

[
β
α+β

− β
α+β

− α
α+β

α
α+β

]

So L′yz = − β
α+β

. Since cy = α, we get c ′yz = −cyLyz =
αβ

α+ β
, i.e.,

R′yz =
1

c ′yz
=

1

α
+

1

β
= Rxy + Rxz .

(Resistors in series ADD!)
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Example 2: Y -∆ transform

x

y

z w

y

z w

Let cxy = α, cxz = β, cxw = γ, and σ = α+ β + γ.

P =


0 0 0 1
0 0 0 1
0 0 0 1
α/σ β/σ γ/σ 0

 , L =


1 0 0 −1
0 1 0 −1
0 0 1 −1

−α/σ −β/σ −γ/σ 1

 .

L′ =

1 0 0
0 1 0
0 0 1

−
−1
−1
−1

 [−α/σ −β/σ −γ/σ
]

=
1

σ

β + γ −β −γ
−α α+ γ −γ
−α −β α+ β

 .
After a little more algebra we get

c ′yz =
αβ

σ
, c ′zw =

βγ

σ
, c ′wy =

γα

σ
.

(Anyone who studied electric circuits would find this familiar!)
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Proof of Dirichlet’s principle via network reduction

E(f ) =
∑
zw∈E

czw [f (z)− f (w)]2.

In going from G to the reduced graph Gx , energy is

lost due to the removal of edges attached to x : amount∑
y∈Vx

cxy [f (x)− f (y)]2.

gained due to the increased conductance on the non-removed edges:
amount

∑
yz∈Ex c̃yz [f (y)− f (z)]2.

Proposition (“Octopus inequality” for electric network). For all f : V → R,∑
y∈Vx

cxy [f (x)− f (y)]2 ≥
∑

yz∈Ex

c̃yz [f (y)− f (z)]2,

Energy lost from removed edges ≥ Energy gained from increased conductances

where equality is attained iff (Lf )(x) = 0.

Proof. An exercise in high school algebra.

Corollary. The Dirichlet energy is monotone non-increasing upon successive network reductions.

By carrying out network reduction one vertex at a time until two vertices z and y are left, we
recover Dirichlet’s principle: E(f ) ≥ ceff(z, y)[f (z)− f (y)]2.

Why the name “octopus”? The tentacular nature of removing of a vertex and its edges may remind you of an

octopus. [est. Pietro Caputo.]
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Octopus inequality & Aldous’ spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo–Liggett–Richthammer JAMS ’10 proved for the interchange process:

Theorem (Octopus inequality, IP)

For all f : S|V | → R,∫ ∑
y∈Vx

cxy [f (ηxy )− f (η)]2 dν(η) ≥
∫ ∑

yz∈Ex

c̃yz [f (ηyz )− f (η)]2 dν(η).

Energy lost from removed edges ≥ Energy gained from increased conductances

This was the key inequality which resolved Aldous’ ’92 spectral gap conjecture:

(OI) =⇒ λIP
2 (G) ≥ λRW

2 (G) =⇒
+proj.

λIP
2 (G) = λEX

2 (G) = λRW
2 (G).

MathSciNet review of CLR10, by L. Miclo: “One leaves this beautiful paper with the dream
that maybe a simpler proof could be found.”

Since then there have been attempts at simplifying the CLR proof, but to little avail.

Also it was unclear if the octopus has any applications beyond resolving the spectral gap
conjecture...
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Octopus inequality & Aldous’ spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo–Liggett–Richthammer JAMS ’10 proved for the interchange process:

Theorem (Octopus inequality, IP)

For all f : S|V | → R,∫ ∑
y∈Vx

cxy [f (ηxy )− f (η)]2 dν(η) ≥
∫ ∑

yz∈Ex

c̃yz [f (ηyz )− f (η)]2 dν(η).

Energy lost from removed edges ≥ Energy gained from increased conductances

RECENT DEVELOPMENTS — Applications of the octopus:

C. ’17, Moving particle lemma, used to carry out coarse-graining in the exclusion process
towards proving hydrodynamic limits.

Alon–Kozma ’18, Improved estimates of mixing times of interchange process, energy level
ordering in the Heisenberg ferromagnetic model.
arXiv:1811.10537: “The first to use the octopus lemma for something new was Chen.”

(Related) Hermon–Salez ’18: Analog of Aldous’ spectral gap conjecture for the zero-range
process, used to establish comparison theorems for two zero-range processes with the same
kinetics on the same graph.
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Moving particle lemma for interchange/exclusion [C. ECP ’17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

Proof sketch.

(OI) ⇔ monotonicity of energy under 1-point network reductions. So reduce G successively until two
vertices x, y are left, we get

EIP(f ) ≥ · · · ≥ 1

2

∫
ceff (x, y)[f (ηxy )− f (η)]2 dν(η). MPL for IP

To obtain the MPL for EX, use the projection of IP onto EX & disintegration of the uniform measure into
orthonormal chambers with fixed particle number.
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Moving particle lemma for interchange/exclusion [C. ECP ’17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

1
2

3

4

5 6

7

8

9

Conventional approach is to pick a single path connecting x and y and obtain the energy cost.
[Guo–Papanicolaou–Varadhan ’88, Diaconis–Saloff-Coste ’93].

Works just fine on finite integer lattices, but does NOT always give optimal cost on general weighted graphs.
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Moving particle lemma for interchange/exclusion [C. ECP ’17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

1
2

3

4

5 6
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8

9

MPL bounds the energy cost by “optimizing electric flow over all paths connecting x and y .”
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Zero-range process ↔ random walk process

P(x,x−1)g(x,3) P(x,x+1)g(x,3)

(LZRf )(ξ) =
∑

(x,y)∈V 2

P(x , y)g(x , ξ(x)) [f (ξ + 1y − 1x )− f (ξ)] , inv. meas. µ.

Let Ω :=

ξ ∈ NV
0 :

∑
x∈V

ξ(x) = m

 and Ω̂ :=

ζ ∈ NV
0 :

∑
x∈V

ζ(x) = m−1

.

For each f : Ω→ R and ζ ∈ Ω̂, define fζ : V → R by fζ(x) = f (ζ + 1x ).

Lemma. For all f , g : Ω→ R, EZR
(P,g,m)(f , g) =

∑
ζ∈Ω̂

µ(ζ)〈fζ , (I− P)gζ〉π . (Jump part decouples)

Theorem [Hermon–Salez ’18]. For any two irred. jump matrices P and Q,

min
f :Ω→R
f 6=0

{
EZR

(P,g,m)
(f , f )

EZR
(Q,g,m)

(f , f )

}
= min

f :V→R
f 6=0

{
〈f , (I− P)f 〉πP

〈f , (I−Q)f 〉πQ

}
.

Proposition [C.]. If P is associated to a symm. RW, then we have the MPL∑
ζ∈Ω̂

[f (ζ + 1y )− f (ζ + 1x )]2µ(ζ) ≤ Reff(x , y)EZR
(P,g,m)(f , f ).
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MPL & coarse-graining

x

x

For finite Λ ⊂ V , denote the average density over Λ by AvΛ[η] := |Λ|−1
∑

z∈Λ η(z).

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX
N on a sequence

of graphs GN = (VN ,EN), we need to prove that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN

[∣∣∣∣∫ t

0

(
ηNs (x)−AvB(x,εN)[ηNs ]

)
ds

∣∣∣∣] = 0, x ∈ VN .

where

{ηNt : t ≥ 0} is the exclusion process generated by TNLEX
N , where TN is the diffusive time

acceleration factor.

µN can be any measure on {0, 1}VN .

B(x , r) is a “ball” of radius r centered at x (in the graph metric).
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX
N on a sequence

of graphs GN = (VN ,EN), we need to prove that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN

[∣∣∣∣∫ t

0
g(ηNs ) ds

∣∣∣∣] = 0, where g(η) := η(x)−AvB(x,εN)[η], x ∈ VN .

The usual method to control additive functionals of the EX process is to employ the entropy inequality, Jensen’s
inequality, and the Feynman-Kac formula:

EµN
[∣∣∣∣∫ t

0

g(ηNs ) ds

∣∣∣∣] ≤ H(µN |νN
ρ(·))

κ|VN |
+

1

κ|VN |
sup
f

{∫
g(η)f (η)dνN

ρ(·)(η)− TN
κ|VN |

〈
√
f ,−LN

√
f 〉
νN
ρ(·)

}
where

ρ(·) ∈ domE is a (possibly non)constant reference density profile.

H(µ|ν) =

∫
log

(
dµ

dν

)
dµ is the relative entropy of µ w.r.t. ν, assumed to be O(|VN |).

κ > 0.

The supremum is taken over all prob. densities f w.r.t. the product Bernoulli measure νN
ρ(·).
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX
N on a sequence

of graphs GN = (VN ,EN), we need to prove that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN

[∣∣∣∣∫ t

0
g(ηNs ) ds

∣∣∣∣] = 0, where g(η) := η(x)−AvB(x,εN)[η], x ∈ VN .

Assume for this discussion that ρ(·) = ρ constant. We wish to estimate∫
g(η)f (η)dνN

ρ (η)− TN
κ|VN |

〈
√
f ,−LN

√
f 〉
νNρ

independent of f and the carré du champ

DN (
√
f , νN

ρ ) :=
1

2

∫ ∑
zw∈EN

czw

(√
f (ηzw )−

√
f (η)

)2

dνN
ρ (η).

Using the Cauchy-Schwarz (Young) inequality and several elementary tricks, we get for any A > 0,∫
g(η)f (η) dνN

ρ (η) ≤ 1

2|B|
∑
z∈B

{
A

2

∫
(η(z)− η(x))2

(√
f (ηzx ) +

√
f (η)

)2

dνN
ρ (η)

+
1

2A

∫ (√
f (ηzx )−

√
f (η)

)2

dνN
ρ (η)

}
. (B = B(x, εN))
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX
N on a sequence

of graphs GN = (VN ,EN), we need to prove that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN

[∣∣∣∣∫ t

0
g(ηNs ) ds

∣∣∣∣] = 0, where g(η) := η(x)−AvB(x,εN)[η], x ∈ VN .

This last term needs to be bounded by something times the carré du champ

DN (
√
f , νN

ρ ) :=
1

2

∫ ∑
zw∈EN

czw

(√
f (ηzw )−

√
f (η)

)2

dνN
ρ (η).

Use the MPL:

1

2|B|
∑
z∈B

∫ (√
f (ηzx )−

√
f (η)

)2

dνN
ρ (η) ≤ 1

|B|
∑
z∈B

Reff (z, x)DN (
√
f , νN

ρ )

≤ diamR (B)DN (
√
f , νN

ρ ),

where diamR (B) is the diameter of B in the resistance metric. (B = B(x, εN))

Assuming that
|VN |
TN

diamR (B) is bounded for all N—this holds for resistance spaces in general— we can then

choose A wisely to bound the variational functional from above by an expression which tends to 0 in the limit.

This proves the replacement lemma.
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX
N on a sequence

of graphs GN = (VN ,EN), we need to prove that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN

[∣∣∣∣∫ t

0
g(ηNs ) ds

∣∣∣∣] = 0, where g(η) := η(x)−AvB(x,εN)[η], x ∈ VN .

AFAIK this is the first time such an argument works on a non-lattice weighted graph, where translational
invariance is absent.

Other usages of MPL: Local 2-blocks estimate [C. ’17]; 2nd-order Boltzmann-Gibbs principle for
equilibrium density fluctuations [C. ’19+].

Another instance where one needs to prove such a replacement lemma in the absence of translational
invariance: Studying non-equilibrium density fluctuations on (Z/NZ)d .

Jara–Menezes ’18 came up with their coarse-graining approach, called the “flow lemma,” which utilizes
mass distribution on the lattice, and is reminiscent of the divisible sandpile problem [Levine–Peres ’09].
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Random walks, electric networks,
moving particle lemma, and hydrodynamic limits

λ−(1)

λ+(1) 1
2

1
2 ×

λ+(N−1)

λ−(N−1)

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

Scaling limits of empirical density in the boundary-driven SEP on the Sierpinski gasket

LLN & CLT: Joint work with Patŕıcia Gonçalves (IST Lisboa), arXiv:1904.08789.

LDP: Joint work with Michael Hinz (Bielefeld), preprint soon.
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Adding reservoirs (Glauber dynamics) to the exclusion process

λ−(1)

λ+(1) 1
2

1
2 ×

λ+(N−1)

λ−(N−1)

Designate a finite boundary set ∂V ⊂ V . For each a ∈ ∂V :

At rate λ+(a), η(a) = 0→ η(a) = 1 (birth).

At rate λ−(a), η(a) = 1→ η(a) = 0 (death).

Formally, (Lboun
∂V f )(η) =

∑
a∈∂V

[λ+(a)(1− η(a)) + λ−(a)η(a)][f (ηa)− f (η)], f : {0, 1}V → R, where

η
a(z) =

{
1− η(a), if z = a,
η(z), otherwise.

1D boundary-driven simple exclusion process: generator N2
(
LEX
{1,2,··· ,N−1} + Lboun

{1,N−1}
)

.

Has been studied extensively for the past ∼ 15 years:

Hydrodynamic limits, fluctuations, large deviations, etc.

Difficulties: # of particles is no longer conserved; the invariant measure is in general not explicit.
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Extending the analysis to higher dims & with > 2 reservoirs?

dspec
0 1 2 3

Symmetric
exclusion process

Boundary-driven
(weakly) asymmetric
exclusion process

Z or (Z/NZ)
Energy methods/PDE X
Integrable probability X
Algebraic duality X
...
LOTS OF TOOLS

Resistance spaces
(w/o translational invariance)
[incl.: Z with long jumps,
Z with a slow bond or site,
fractals, trees, random graphs, ...]
Energy methods/PDE X
Integrable probability ???
Algebraic duality (hopeful)

dspec ≥ 2: CURSE OF DIMENSIONALITY!!

Euclidean torus (Z/NZ)d: Too many results, cf. Kipnis-Landim ’99
Crystal lattices: Tanaka ’12
Riemannian manifolds: van Ginkel-Redig ’18 (no translational invariance)

Today’s message: On state spaces with spectral dimension dspec ∈ [1, 2), we have a path towards
proving scaling limits of SSEP/WASEP w/o requiring translational invariance.

Open question: Prove scaling limits of boundary-driven SSEP/WASEP on state spaces with dspec ≥ 2.
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Boundary-driven exclusion process on the Sierpinski gasket

a0

a1 a2

Construction of Brownian motion with invariant measure m (the standard self-similar measure) as scaling

limit of RWs accelerated by TN = 5N .

[Goldstein ’87, Kusuoka ’88, Barlow-Perkins ’88]

A robust notion of calculus on SG which in some sense mimics (but in many other senses differs from)
calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.

[Kigami, Analysis on Fractals ’01; Strichartz, Differential Equations on Fractals ’06]

What is the analog of “

∫
K

|∇f |2 dx” in the fractal setting?

Corresponding domain—analog of H1(K , dx)?

A good model for rigorously studying (non)equilibrium stochastic dynamics with ≥ 3 boundary reservoirs.
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Boundary-driven exclusion process on the Sierpinski gasket

a0

a1 a2

Construction of Brownian motion with invariant measure m (the standard self-similar measure) as scaling

limit of RWs accelerated by TN = 5N .

[Goldstein ’87, Kusuoka ’88, Barlow-Perkins ’88]

A robust notion of calculus on SG , which in some sense mimics (but in many other senses differs from)
calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.

[Kigami, Analysis on Fractals ’01; Strichartz, Differential Equations on Fractals ’06]

E(f ) = lim
N→∞

5N

3N

∑
xy∈EN

(f (x)− f (y))2
, f ∈ L2(K ,m).

F :=
{
f ∈ L2(K ,m) : E(f ) < +∞

}
.

A good model for rigorously studying (non)equilibrium stochastic dynamics with ≥ 3 boundary reservoirs.
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Boundary-driven exclusion process on the Sierpinski gasket

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Parameter b > 0 governs the inverse speed (relative to the bulk jump rate) at which the reservoir
injects/extracts particles into/from the boundary vertices V0.

Our main result in a nutshell [C.–Gonçalves ’19]

A phase transition in the scaling limit of the particle density depending on the value of b,
reflected by the different boundary conditions. The critical value of b is 5

3
.

Dirichlet (b < 5
3

), Robin (b = 5
3

), Neumann (b > 5
3

)
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Hydrodynamic limit: a LLN result

Assume that sequence of probability measures {µN}N≥1 on {0, 1}VN is associated to a density
profile % : K → [0, 1]: for any continuous function F : K → R and any δ > 0,

lim
N→∞

µN

η ∈ {0, 1}VN :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

F (x)η(x)−
∫
K

F (x)%(x) dm(x)

∣∣∣∣∣∣ > δ

 = 0.

Given the process {ηNt : t ≥ 0} generated by 5NLbEX
N , the empirical density measure πN

t given by

πN
t =

1

|VN |
∑
x∈VN

ηNt (x)δ{x}

and for any test function F : K → R, we denote the integral of F wrt πN
t by πN

t (F ) which equals

πN
t (F ) =

1

|VN |
∑
x∈VN

ηNt (x)F (x).

Claim. The sequence {πN
· }N converges in the Skorokhod topology on D([0,T ],M+) to the

unique measure π· with dπ·(x) = ρ(·, x) dm(x).
For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

ηNt (x)F (x)−
∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit)

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

ηNt (x)F (x)−
∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with Dirichlet boundary condition if b < 5

3
: ∂tρ(t, x) = 2

3
∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

ρ(t, a) = ρ̄(a), t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit)

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

ηNt (x)F (x)−
∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with Neumann boundary condition if b > 5

3
: ∂tρ(t, x) = 2

3
∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

(∂⊥ρ)(t, a) = 0, t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit)

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

ηNt (x)F (x)−
∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with linear Robin boundary condition if b = 5

3
: ∂tρ(t, x) = 2

3
∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

(∂⊥ρ)(t, a) = −λΣ(a)(ρ(t, a)− ρ̄(a)), t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

[Ingredient #1] Analysis on fractals
Convergence of discrete Laplacian to the continuous counterpart; normal derivatives at the boundary;
integration by parts formula ... [Kigami ’01, Strichartz ’06].
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

[Ingredient #1] Analysis on fractals
This part will produce the weak formulation of the heat equation.
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

[Ingredient #2] Analysis of the boundary term

b > 5/3: The first term dominates, should converge to

∫ t

0

2

3

∑
a∈V0

ρs (a)(∂⊥Fs )(a) ds

b = 5/3: Both terms contribute equally, should converge to∫ t

0

2

3

∑
a∈V0

[
ρs (a)(∂⊥Fs )(a) + λΣ(a)(ρs (a)− ρ̄(a))Fs (a)

]
ds

b < 5/3: Impose ρt(a) = ρ̄(a) for all a ∈ V0, should converge to

∫ t

0

2

3

∑
a∈V0

ρ̄(a)(∂⊥Fs )(a)

Require a series of replacement lemmas — not trivial on state spaces without translational invariance!
[Thankfully, my MPL can be used to establish the replacement lemmas!]
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

yN →∞
0 = πt(Ft)− π0(F0)−

∫ t

0

πs

((
2

3
∆ + ∂s

)
Fs

)
ds + (boundary term)

[Ingredient #3] Convergence of stochastic processes

Show that {πN
· }N is tight in the Skorokhod topology on D([0,T ],M+) via Aldous’ criterion.

Prove that any limit point π· is absolutely continuous w.r.t. the self-similar measure m, with
πt(dx) = ρ(t, x) dm(x), and ρ ∈ L2(0,T ,F).

Finally, prove ! of the weak solution to the heat equation to conclude ! of the limit point.
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

The product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− ρ

)
F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣF (a)

]
ds,

which has QV

〈MN (F )〉t =

∫ t

0

5N

|VN |2
∑
x∈VN

∑
y∈VN
y∼x

(ηNs (x)− ηNs (y))2(F (x)− F (y))2ds

+

∫ t

0

∑
a∈V0

5N

bN |VN |2
{λ−(a)ηNs (a) + λ+(a)(1− ηNs (a))}F 2(a)ds.
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

The product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− ρ

)
F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣF (a)

]
ds,

which, as N →∞, has the QV of a space-time white noise (with boundary condition)

2

3
· 2ρ(1− ρ)tEb(F ), where Eb(F ) = E(F ) + λΣ

∑
a∈V0

F 2(a)1{b=5/3}
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

The product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− ρ

)
F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣF (a)

]
ds,

We then argue that the test function F ∈ dom∆b be chosen appropriate to each boundary condition such that
the boundary term vanishes as N →∞.

dom∆b :=


{F ∈ dom∆ : F |V0

= 0}, if b < 5/3,

{F ∈ dom∆ : (∂⊥F )|V0
= −λΣF |V0

}, if b = 5/3,

{F ∈ dom∆ : (∂⊥F )|V0
= 0}, if b > 5/3.

For technical reasons (in order to use Mitoma’s tightness criterion) we use a smaller test function space
Sb := {F ∈ dom∆b : ∆bF ∈ dom∆b} , which can be made into a Frechét space.
Let S′b be the topological dual of Sb .
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Ornstein-Uhlenbeck equation with boundary condition

Definition (Ornstein-Uhlenbeck equation)

We say that a random element Y taking values in C([0,T ],S′b) is a solution to the
Ornstein-Uhlenbeck equation on K with parameter b if:

1 For every F ∈ Sb,

Mt(F ) = Yt(F )− Y0(F )−
∫ t

0
Ys(

2

3
∆bF ) ds

and Nt(F ) = (Mt(F ))2 −
2

3
· 2ρ(1− ρ)tEb(F )

are Ft -martingales, where Ft := σ{Ys(F ) : s ≤ t} for each t ∈ [0,T ].

2 Y0 is a centered Gaussian S′b-valued random variable with covariance

Eb
ρ [Y0(F )Y0(G)] = ρ(1− ρ)

∫
K

F (x)G(x) dm(x), ∀F ,G ∈ Sb.

Moreover, for every F ∈ Sb, the process {Yt(F ) : t ≥ 0} is Gaussian: the distribution of
Yt(F ) conditional upon Fs , s < t, is Gaussian with mean Ys(T̃b

t−sF ) and variance∫ t−s
0

2
3
·2ρ(1−ρ)Eb(T̃b

r F ) dr , where {T̃b
t : t > 0} is the heat semigroup associated with 2

3
Eb.
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O-U limit of equilibrium density fluctuations: a CLT result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Dirichlet (b < 5
3 ), Robin (b = 5

3 ), Neumann (b > 5
3 )

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0.

Let QN,b
ρ be the probability measure on D([0,T ],S′b) induced by the DFF YN

· started from νN
ρ and boundary

parameter b.

Theorem (CLT)

The sequence {QN,b
ρ }N converges in distribution, as N →∞, to a unique solution of the

Ornstein-Uhlenbeck equation with parameter b (as defined previously).

Key Lemma. T̃b
t (Sb) ⊂ Sb for any t > 0. Enough to verify that T̃b

t

(
L1(K ,m)

)
⊂ dom∆b , which can be

shown using e.g. the Nash inequality (heat kernel upper bound).

The rest of the argument follows a martingale approach of Kipnis–Landim.
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Density large deviations principle (Dirichlet case)

QN : Law of the Markov process generated by 5NLbEX
N , with b = 1.

M+: Space of nonnegative Borel measures on K .

F0 := {f ∈ F : f |V0
= 0}.

Theorem (Density LDP: rate |VN | ∼ 3
2 3N with good rate function I0)

For each closed set C and each open set O of the Skorokhod space D([0,T ],M+), endowed with
the Skorokhod topology of weak convergence of measures w.r.t. the Dirichlet problem,

lim sup
N→∞

1

|VN |
log QN [C] ≤ − inf

π∈C
I0(π), lim inf

N→∞

1

|VN |
log QN [O] ≥ − inf

π∈O
I0(π).

Let M+,1 = {µ ∈M+ | µ(dx) = ρ(x)m(dx), 0 ≤ ρ ≤ 1 m-a.e.} and

D+,1,E [0,T ] :=
{
π ∈ D([0,T ],M+,1) | π(t, dx) = ρ(t, x)m(dx), ρ ∈ L2(0,T ,F)

}
.

I0(π) <∞⇐⇒ π ∈ D+,1,E [0,T ]; then ∃H ∈ C([0,T ],∆−1(F0)) ∩ C1((0,T ),∆−1(F0)) s.t.

I0(π) =
1

2

∫ T

0

∫
K
ρ(t, x) (1− ρ(t, x)) dΓ(Ht) dt .

where dΓ(F ) is the energy measure on K defined via E(F ) =

∫
K

dΓ(F ).

N.B.: For nonconstant F ∈ domE, dΓ(F ) ⊥ dm. This is a source of major technical difficulties.

Technical Remark. The topology we use guarantees that D+,1,E [0,T ] is closed.
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A sneak preview of upcoming series of works, and Thank you!

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Symmetric exclusion process with slowed boundary on the
Sierpinski gasket

Dirichlet (b < 5
3 ), Robin (b = 5

3 ), Neumann (b > 5
3 )

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

(Non)equilibrium density hydrodynamic limit (DRNX) [C.–Gonçalves ’19]

Ornstein-Uhlenbeck limit of equilibrium density fluctuations (DRNX). [C.–Gonçalves ’19]

Large deviations principle for the (non)equilibrium density (DX) [C.–Hinz ’19]

Hydrostatic limit, scaling limit of nonequilibrium density fluctuations (D in progress).
[C.–Franceschini–Gonçalves–Menezes ’19+] → careful study of two-particle correlations

More in the pipeline:

Motion of the tagged particle (a fractional BM on the gasket?).

Add (suitably rescaled) weak asymmetry to the jump rate, prove that the equilibrium density fluctuations
converges (subsequentially) to a stochastic Burgers equation [C. ’19+]
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