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Random walks and electric networks

@ Let G = (V, E) be a locally finite connected graph, and ¢ = {cxy }xycE be the set of positive
weights (conductances) endowed on E.

@ The (symmetric) random walk process on the weighted graph (=electric network) (G, c) is
an irreducible Markov chain on V with transition probability

N Cy/cx, ifxy€E, L
P(xy) = { 0, otherwise. O = ZE Cxz-
zZ:xz€

@ The RW process has 7(-) o c(-) as reversible (invariant) measure, and the associated
Dirichlet energy is

EW() = (F,(1-P))r = > cawlf(2) — F(W)?, F:V >R
zw€eE
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(The entries along each row must add up to 1.)

Conductances
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Random walks and electric networks

o Let G = (V,E) be a locally finite connected graph, and ¢ = {Gxy }«,cE be the set of positive
weights (conductances) endowed on E.

@ The (symmetric) random walk process on the weighted graph (=electric network) (G, c) is
an irreducible Markov chain on V' with transition probability

| oy/ex, ifxy €E, o
P(x.y) _{ 0, otherwise. O = Z Oz

@ The RW process has m(-) o c(-) as reversible (invariant) measure, and the associated
Dirichlet energy is

EV(A) =(F,(1=P)f)r = > cwlf(z) - F(W)?, f:V =R
zw€eE

o Effective resistance between A, B C V:

Rest(A, B) = sup {[sl’”(f)r1

fZVHR, fIA:17 f‘BZO}
In particular, if A= {x} and B = {y} we write Reg(x,y). By definition,
[F(x) = FO)]? < Rer(x,¥)ERV(F), F:V =R,

Also Rogg : V X V — R4 is a metricon V.
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Interacting particle systems on an electric network

Overarching question: Can we study Markov processes involving MANY interacting “random
walkers” on a weighted graph (G, c)? J

Mathematical development started with Spitzer (on the integer lattice).
Mathematically tractable models:

@ Exclusion process (state space {0, l}V): Particles perform RWs subject to the exclusion
constraint that

@ Zero-range process (state space N(‘J/): Particle at x jumps to neighboring y at rate
depending on P(x, y) [jump] and the number of particles at x ONLY [zero-range kinetics].

Both models are associated with a conserved quantity—the total # of particles (unless additional
dynamics or “reservoirs’ are attached).
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Particle system #1: Exclusion process

The (symm.) exclusion process on (G, c) is a Markov chain on {0,1}" with generator

(LX) = D ey(VyF)m). f:{0,1}V =R,
xy€E
n(y), ifz=x,
where (Vs )(n) = F(%) — F(n) and (77)(z) = n(x), if z =y,
n(z), otherwise.

e Each product Bernoulli measure vq, o € [0, 1], with marginal vo{n : n(x) = 1} = o for each

x € V, is an invariant measure.

> cow /{ (Vo AP dra(n)

. 1
o Dirichlet energy: EEX(f) = 2
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Particle system #2: Zero-range process

P(z,x—1)g(x,3) P(z,2+1)g(z,3)

.83 i e3e0 3

The zero-range process on (G, c) is a Markov chain on N(‘)/ with generator

(LR = > POy)ala ) F(E+1y — L)~ F(€)], f:Ny =R

(x,y)eV?

where P is an irreducible jump Markov matrix on V2 and g:V x Ng — Ry is the kinetic rate,
g(x,0) = 0 always.

where 7 is the invariant

£(x)
1
o Invariant measure is a product one: u(§) = = H H () ,
z 9(x, k)
x€V k=1
measure for P.

o Dirichlet energy: EZR(f) = (f, —LZRf),.
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Hierarchy of stochastic processes on a fixed graph

Interchange process f : {Permutations on V} — R

1
P 2
() = [ 5 calfr™) — FF dv(n).
zweE
Reversible measure: uniform measure v on {Perms on V}

T PROJECTION |

Exclusion process f:{0,1}V — R

1
EX w 2
e = [ 5 3 ealf ™) ~ F)F dva(n).
zw€eE
Reversible measure: product Bernoulli measure v, « € [0, 1],
vo{n:n(x) =1} = aforall x € V.

1 PROJECTION |

Random walk process f:V — R

EN() = > canlf(z) — F(w).

w€E

Reversible measure: c¢(:) = /( c,

Aldous’ spectral gap conjecture '92: Is A\EX(G) = AfW(G)? J

A projection argument easily leads to: A3V (G) > AF¥(G) > ALF(G).
For the other direction, suffice to prove that AJ¥(G) > AFW(G).
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Random walks, electric networks,
moving particle lemma, and hydrodynamic limits

o Caputo, Liggett, and Richthammer, J. Amer. Math. Soc. (2010).
o C., Electron. Commun. Probab. (2017).
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Hierarchy of stochastic processes on a fixed graph

Interchange process f : {Permutations on V} — R

1 X)
5/[f(n VY — F()]? dv(n) < Regs(x, y)EF ().
Moving particle lemma

1 PROJECTION |

Exclusion process f:{0,1}V — R

1 X
5 [ 1) = FF dvan) < Ressle E™ (1)
Mf)ving particle lemma

T PROJECTION |

Random walk process f:V — R

[F() = FI < Resr(x, )™ (F).

Dirichlet principle

(Also a dual version involving flows: Thomson principle)

Energy inequalities
Does the MPL follow trivially from the Dirichlet principle? NO!
However, a common idea is electric network reduction (Schur complementation in linear algebra).
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Network reduction: an exercise in Schur complements

Idea: Remove vertices (and edges attached to them) without changing the effective conductance between any
of the non-removed vertices.
@ Suppose we remove the vertex x € V from (G, c), as well as the edges attached to x.
Call the reduced graph G, = (V, Ex).
In the linear algebra language, we will reduce the Laplacian L = |1 — P to a new Laplacian L’ (of one fewer
dimension).
This is attained by taking the Schur complement of the (x, x) block in L:

X Y

IfL= [z L

} , thenl’ =X —Y(Lo)'Z=X—-YZ  (Recall Ly =1.)

@ In component form, L;Z =Ly, — LyLy fory,z € Vi.

. ) ()
Since L(yz) =— ’(Vz) = —Ccy—yz whenever y # z, we see that the new conductances on E, become

CyxCxz

’ ’ ~
¢, =—-¢l,=—c(ly: —Lxle)=c: + =: Cyz + &z
X

Joe P. Chen (Colgate) RWs, electric networks & particle systems Leiden Probability (May '19) 10/28



L AVAYAY e e VAVAVSY . AVA%AY ]
y X z y z
Let cxy = and cx, =
0 0 1 1 0 -1
p=| 0 0 1, L= 0 1 -1
a_ B9 _a __ B
a+f a+p a+p a+p
Let L’ be the Schur complement of the 1 block in L:
L= [1 0] _ [—1} [_%ﬁ %] _ [ ia+£ Wyﬁ]
— « —_a R
01 1 * a+pB a+p
Sol;, = _aLiﬁ' Since ¢, = a, we get ¢;, = —¢yLy, = of

— e,
a+ g
=

R,= 2 _1
yz &

1
+ E: ny + Rz

(Resistors in series ADD!)

«O>» «F>r «=)r «=>» = A







Proof of Dirichlet’s principle via network reduction

E(f) =) cawlf(z) - F(W)*

zw€E
In going from G to the reduced graph G, energy is

@ lost due to the removal of edges attached to x: amount
2
Zye\/x ayf(x) = F(y)I*
@ gained due to the increased conductance on the non-removed edges:

amount }° g &[f(y) — f(2)]?.

Proposition (“Octopus inequality” for electric network). For all f: V — R,

D alfC) = IR > Y &:lf(y) - f(2))%,

yeVy yz€Ey
Energy lost from removed edges > Energy gained from increased conductances
where equality is attained iff (Lf)(x) = 0.
Proof. An exercise in high school algebra.

Corollary. The Dirichlet energy is monotone non-increasing upon successive network reductions.

By carrying out network reduction one vertex at a time until two vertices z and y are left, we
recover Dirichlet's principle: £(f) > ceqr(z, y)[f(z) — f(y)]*.
Why the name “octopus”? The tentacular nature of removing of a vertex and its edges may remind you of an
octopus. [est. Pietro Caputo.]
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Octopus inequality & Aldous’ spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo—Liggett—Richthammer JAMS '10 proved for the interchange process:

Theorem (Octopus inequality, IP)

Forall f: Sy = R,

[ X ool ~ taP v > [ 3 salf(we) - @) duta).

y€Vx yz€Ex

Energy lost from removed edges > Energy gained from increased conductances

This was the key inequality which resolved Aldous’ '92 spectral gap conjecture:

(O) = M(6) 2 M™(6) = M(6) = AFX(6) = A™(6).

o MathSciNet review of CLR10, by L. Miclo: “One leaves this beautiful paper with the dream
that maybe a simpler proof could be found.”

@ Since then there have been attempts at simplifying the CLR proof, but to little avail.

@ Also it was unclear if the octopus has any applications beyond resolving the spectral gap
conjecture...
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Octopus inequality & Aldous’ spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo—Liggett—Richthammer JAMS ’10 proved for the interchange process:

Theorem (Octopus inequality, IP)

For all f : S|V‘ — R,

/Z olf(m) — F(n)]? dV(n)Z/ D &elf(n?) — F()]? du(n).

yEVy yz€EL

Energy lost from removed edges > Energy gained from increased conductances

RECENT DEVELOPMENTS — Applications of the octopus:

o C. '17, Moving particle lemma, used to carry out coarse-graining in the exclusion process
towards proving hydrodynamic limits.

o Alon—-Kozma '18, Improved estimates of mixing times of interchange process, energy level
ordering in the Heisenberg ferromagnetic model.
arXiv:1811.10537: “The first to use the octopus lemma for something new was Chen.”

o (Related) Hermon—Salez '18: Analog of Aldous’ spectral gap conjecture for the zero-range
process, used to establish comparison theorems for two zero-range processes with the same
kinetics on the same graph.
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Moving particle lemma for interchange/exclusion [c. Ecp'17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

3 [ 1) = P duo) < Rl DEF D), £S5y~ B,

> [ 1) = F@P dva () < R, JEP(P), £5 0,1}V > R

Proof sketch.
@ (Ol) < monotonicity of energy under 1-point network reductions. So reduce G successively until two
vertices x, y are left, we get

eFF)y > > %/ Cett (6, YIIF(Y) — F()? dv(n). MPL for IP

@ To obtain the MPL for EX, use the projection of IP onto EX & disintegration of the uniform measure into
orthonormal chambers with fixed particle number.
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Moving particle lemma for interchange/exclusion [c. Ecp'17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

> [16r) — @ dun) < Rl NET (), £ Sy > B,

3 [ 1) = P dva () < R, JEP(P), 5 (0,1} > R

Conventional approach is to pick a single path connecting x and y and obtain the energy cost.
[Guo—Papanicolaou—Varadhan '88, Diaconis—Saloff-Coste '93].
Works just fine on finite integer lattices, but does NOT always give optimal cost on general weighted graphs.
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Bounding the energy cost of swapping two particles at x and y in an interacting particle system
by the effective resistance between x and y w.r.t. the random walk process.
1

5 / [F(7?) = f()]? dv(n) < Rer(x, V)ET(F), F: Sy =+ R,

3 [ 1) = F)P dva(a) < Ren(eo)EBX(E), £ 40,1} > R

A
. 'A““e
PR A
s 7
LS

MPL bounds the energy cost by “optimizing electric flow over all paths connecting x and y."”
(=] = = (PN G4
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Zero-range process <> random walk process

P(z,2—1)g(2,3) P(z,24+1)0(z,3)

ii f{. Li.. 3

(L7RA)E) = > POyl () [F(E+1y = L) = £(€)],  inv. meas. p.

(xy)ev?
Let Q := {§ eNy: Z{(x) = m} and Q2 := {C ENY: ZC(X) = m—l}.
xeVv xeVvV

For each f: Q — R and ¢ € Q, define f; : V — R by fz(x) = £(¢ + 1x).

Lemma. For all f,g: Q — R, €(Pgm (f,g) = Zu C)(fe, (1 = P)ge)x.  (Jump part decouples)
ceQ

Theorem [Hermon-Salez '18]. For any two irred. jump matrices P and Q,
ZR
&m0 =P
FO R gZR (A T AR (- Qf)rg
f#0 Q,g,m) £40 ’ Q
Proposition [C.]. If P is associated to a symm. RW, then we have the MPL

STIAC+1y) = F(C+ LIPRC) < Refr(x Y)ERR, 1y (F, F):

¢e
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MPL & coarse-graining

AVXVA AVXVA AVXVA AVXVA AVXVA AVXVA AVXVA AVXVA

For finite A C V, denote the average density over A by Ava[n] := [A[72 3, 4 1(2).
In the proof of the hydrodynamic limit for Markov processes, w/ generator TNEEX on a sequence
of graphs Gy = (Vy, En), we need to prove that for every t > 0:

Replacement lemma

:|:O7 x € Wp.

t
N N
Llig Nllm E.‘"N H/O (ns (X) - AVB(X,&N) [T]s ]) ds

where

o {n) :t >0} is the exclusion process generated by TNLII,?,X, where Ty is the diffusive time
acceleration factor.

@ uy can be any measure on {0,1}YV.

o B(x,r)is a “ball” of radius r centered at x (in the graph metric).
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNLEX on a sequence
of graphs Gy = (Vp, En), we need to prove that for every t > 0:

Replacement lemma

lim lim Eg, H/ g(n.e )ds:| =0, where g(7) := n(x) — Avg( ], x € V.

el0 N—oo

The usual method to control additive functionals of the EX process is to employ the entropy inequality, Jensen's
inequality, and the Feynman-Kac formula:

Euy H/Or g(nl') ds

where

N
< H(unlvy ) 1

}*W RIVal WV —LuVB }

sup { [ etnreaniy,m -

n|VN|

@ p(-) € domE is a (possibly non)constant reference density profile.
d
o H(ulv) = / log (d—u> dp is the relative entropy of p w.r.t. v, assumed to be O(|Vy]|).
v

@ x>0

@ The supremum is taken over all prob. densities f w.r.t. the product Bernoulli measure 1/2’(.).
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In the proof of the hydrodynamic limit for Markov processes, w/ generator Ty
of graphs Gy = (Vp, En), we need to prove that for every t > 0:
lim lim E d
lim Jim By H/ g(nt) ds

EX
‘C’N

on a sequence

)
Assume for this discussion that p(-) = p constant. We wish to estimate

| = 0. where ¢r) = 1) ~ Avagem bl x € Vo
[ etnreanon -

independent of f and the carré du champ

Dn

’TN

fu)

(VE, =LV oy

zw€Ep

2T e (Ve - i) o
Using the Cauchy-Schwarz (Young) inequality and several elementary tricks, we get for any A > 0
ugl <

[ ermado < 255 [ @ =008 (Vi +im) ako
zeB
o (\/f(n” - M) dup”(n)} . (B = B(x,N))
O «Fr «=» <= Dace
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNEI,;:,X on a sequence
of graphs Gy = (V, En), we need to prove that for every t > 0:

Replacement lemma

t
lim lim E Ny d:
lim im B H/O g(ns)ds

} =0, where g(1) == n(x) — Avp(ecmlil, x € Vi,

This last term needs to be bounded by something times the carré du champ
1 2
N N
Dy (VF, vy) = 5/ Z Cow (‘/f(nz"" — y/f(n)) dv, (n).
w€EEp
Use the MPL:

ﬁ z;g / < [f(n=) — m)z dug(n) < % Z Rett (2, x)Dn(VF, V;/Y)

zeB

A

IN

diamg(8)Dy(VF, 1)),
where diamg(B) is the diameter of B in the resistance metric. (B = B(x, eN))
Vi
Assuming that %diamR(B) is bounded for all N—this holds for resistance spaces in general— we can then

choose A wisely to bound the variational functional from above by an expression which tends to 0 in the limit.
This proves the replacement lemma.
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MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator TNEEX on a sequence
of graphs Gy = (Vy, En), we need to prove that for every t > 0:

Replacement lemma

o t
fim fm By H / g(n§>ds} = 0, where g(n) == n(x) — Avageemlil, x € Vi,
0

€l0 N—oco

@ AFAIK this is the first time such an argument works on a non-lattice weighted graph, where translational
invariance is absent.

@ Other usages of MPL: Local 2-blocks estimate [C. '17]; 2nd-order Boltzmann-Gibbs principle for
equilibrium density fluctuations [C. '19+].

@ Another instance where one needs to prove such a replacement lemma in the absence of translational
invariance: Studying non-equilibrium density fluctuations on (Z/NZ)d.

Jara—Menezes '18 came up with their coarse-graining approach, called the “flow lemma,” which utilizes
mass distribution on the lattice, and is reminiscent of the divisible sandpile problem [Levine—Peres '09].
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_ Random walks, electric networks,_ o
moving particle lemma, and hydrodynamic limits

Reservoir

Ap(N-1)

Reservoir Reservoir

Scaling limits of empirical density in the boundary-driven SEP on the Sierpinski gasket
o LLN & CLT: Joint work with Patricia Gongalves (IST Lisboa), arXiv:1904.08789.
@ LDP: Joint work with Michael Hinz (Bielefeld), preprint soon.
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Adding reservoirs (Glauber dynamics) to the exclusion process

Designate a finite boundary set 9V C V. For each a € 9V:
@ At rate A\ (a), n(a) = 0 — n(a) =1 (birth).
@ At rate A_(a), n(a) =1 — n(a) = 0 (death).

Formally, (EB:’/‘mf )(n) Z A (a)(1 — n(a)) + A_(a)n(I[F(n") — F(n)], F:{0,1}Y — R, where
acaV

n(z) = { 1 —n(a), ifz::a7

n(z), otherwise.

@ 1D boundary-driven simple exclusion process: generator N? (ﬁ}{al)g n—1} + Et{’f“,‘vnfl}
@ Has been studied extensively for the past ~ 15 years:
Hydrodynamic limits, fluctuations, large deviations, etc.

@ Difficulties: # of particles is no longer conserved; the invariant measure is in general not explicit.
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. d, i i i N
Symmetric Buclidean torus (Z/NZ)*: Too many results, cf. Kipnis-Landim 99
e s Crystal lattices: Tanaka ’12
o : ifolds: van Ginkel-Redig 18 (no translational invariance)

f ‘-. ¥ : dspec
2

dspec > 2: CURSE OF DIMENSIONALITY!!

Zor (Z/NZ)
Energy methods/PDE v

Integrable probability v/ -
Algebraic duality v Resistance spaces
(w/o translational invariance)

Boundary-driven
(weakly) asymmetric LOTS OF TOOLS
exclusion process

[incl.: Z with long jumps,
7 with a slow bond or site,
fractals, trees, random graphs, ...]
Energy mothods/PDE v
Integrable probability 7?7
Algebraic duality (hopeful)

@ Today's message: On state spaces with spectral dimension d.,.. € [1,2), we have a path towards
proving scaling limits of SSEP/WASEP w/o requiring translational invariance.

@ Open question: Prove scaling limits of boundary-driven SSEP/WASEP on state spaces with dspec > 2.




Boundary-driven exclusion process on the Sierpinski gasket

Qo

a1 a2

@ Construction of Brownian motion with invariant measure m (the standard self-similar measure) as scaling
limit of RWs accelerated by Ty = 5N,
[Goldstein '87, Kusuoka '88, Barlow-Perkins '88]

@ A robust notion of calculus on SG which in some sense mimics (but in many other senses differs from)
calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.

[Kigami, Analysis on Fractals '01; Strichartz, Differential Equations on Fractals '06]

What is the analog of / |Vf|? dx" in the fractal setting?
JK

Corresponding domain—analog of H*(K, dx)?

@ A good model for rigorously studying (non)equilibrium stochastic dynamics with > 3 boundary reservoirs.
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Boundary-driven exclusion process on the Sierpinski gasket

Qo

ai as
@ Construction of Brownian motion with invariant measure m (the standard self-similar measure) as scaling

limit of RWs accelerated by Ty = 5".
[Goldstein '87, Kusuoka '88, Barlow-Perkins '88]

@ A robust notion of calculus on SG, which in some sense mimics (but in many other senses differs from)
calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.

[Kigami, Analysis on Fractals '01; Strichartz, Differential Equations on Fractals '06]
E(f)= lim — (F(x) = f(¥)?, e (K, m).
Fo={fe’(K,m): &(f) < +oo} .
@ A good model for rigorously studying (non)equilibrium stochastic dynamics with > 3 boundary reservoirs.
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Boundary-driven exclusion process on the Sierpinski gasket

Reservoir

1
SNEIRIEX _ 5N (L%]IX + bwﬂkloun) )

Reservoir Reservoir

Parameter b > 0 governs the inverse speed (relative to the bulk jump rate) at which the reservoir

injects/extracts particles into/from the boundary vertices V.

Our main result in a nutshell [C.-Gongalves '19]

A phase transition in the scaling limit of the particle density depending on the value of b,

reflected by the different boundary conditions. The critical value of b is g

Dirichlet (b < g) Robin (b = 2), Neumann (b > g)

Joe P. Chen (Colgate) RWs, electric networks & particle systems Leiden Probability (May '19)
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Hydrodynamic limit: a LLN result

Assume that sequence of probability measures {uy}n>1 on {0, 1}V is associated to a density
profile o : K — [0, 1]: for any continuous function F : K — R and any 6 > 0,

Jim oy qn € {0, 1} > Fm(x) — /K F(x)o(x) dm(x)| > & p = 0.

|V |XEV

Given the process {n/ : t > 0} generated by SNEbEX, the empirical density measure 7V given by
= Z 1 ()8
XE Vn
and for any test function F : K — R, we denote the integral of F wrt 7rt by m; N(F) which equals

D nt ()F(x).

xeVy

' (F) = |V|

Claim. The sequence {7V} converges in the Skorokhod topology on D([0, T], M) to the
unique measure 7. with dm.(x) = p(-, x) dm(x).
For any t € [0, T], any continuous F : K — R and any § > 0,

Z NV (x)F(x) — /K F(x)p(t,x)dm(x)| >4 p =0,

xeVy

li N
N N T \v |
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1 n
5N£REX _ 5N (K’EX + b_NC’Rou )
Az(2) = Ap(a) + A—(a)

a) = 3142

As(a)
For any t € [0, T], any continuous F : K — R and any § > 0,

1
l A
oo I {"'

[V

> M eFe) - [
xXEVy K

where p is the unique weak solution of the heat equation
with Dirichlet boundary condition if b < %:

F(x)p(t,x) dm(x)| > 5} =0,
8fp(tvx) = %Ap(t7x)a
o(t,3) = p(3),

te[0,T], xe€ K\ W,
te(0,T], ae W,
p(0,x) = o(x), xeK.
O 4Fr «=)r (= Qe
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1
Nf,b X N X Cb
5 NE =5 (CE +b_N Noun).
)\):(a) =
Pt A | Pt

Ao (a) +A-(2)
o) = 2x02)

Ax(a)
For any t € [0, T], any continuous F : K — R and any 6 > 0

li N
Ny PN {’7' |v |

xeVy

> iR = [ FGp(e. ) dmG| > 8
where p is the unique weak solution of the heat equation
with Neumann boundary condition if b > 2

} .

5:
Otp(t,x) = 2Ap(t x), t€[0,T], x€ K\ Vo,
(0+p)(t,a) =0, te(0,T], a€ VW,
p(0,x) = o(x), xeK.
«O» <Br <= <= Do
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1
Nf,b X N X Cb
5 NE =5 (CE +b_N Noun).
)\):(a) =
Pt A | Pt

Ao (a) +A-(2)
o) = 2x02)

Ax(a)
For any t € [0, T], any continuous F : K — R and any 6 > 0

li N
MT;“N{"' |V|

xeVy

> iR = [ FGp(e. ) dmG| > 8
where p is the unique weak solution of the heat equation
with linear Robin boundary condition if b =

} 0
e . o §. i
3.
dep(t,x) = 38p(t,x),
(0+p)(t,a) =

te[0,T], x €K\ Vo,
7)‘2( )(p(tva)fﬁ(a)x te(07 T]a ae VW,
(0, x) = e(x), x e K.
«Or <Fr «=r «=» E VAR
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Analysis of Dynkin's martingale (which has QV tending to 0 as N — o0):

Ml F) = nlr) — wl(r - [ (Sava)R) o
t 3N ’ N
[Ingredient #1] Analysis on fractals
integration by parts formula

M@0 F)@) + sary (@0 (@) — @) ()

ds + on(1).
. [Kigami '01, Strichartz '06].

«Or «Fr o« » > DA
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Convergence of discrete Laplacian to the continuous counterpart; normal derivatives at the boundary;



N

Analysis of Dynkin's martingale (which has QV tending to 0 as N — o)
t =

MY (F) = ! (Ft)—wo(Fo)—/ot 2 ((3aro)r) e

A > [ns(a)(a F)G)+ 37
a€

[Ingredlent #1] Analysis on fractals

N

3NpN
This part will produce the weak formulation of the heat equation

Az(a)(nf'(a) — p(a))Fe(a)

ds + op(1).

«Or «Fr < » > DA
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Analysis of Dynkin’s martingale (which has QV tending to 0 as N — o0):
t
MY (F) = m”(Ft) ~ () - [ ) ((3A + o, ) ) s
0
)
TVl o>

N
{ns (a)(0"F)(a) +
EIS%)

3NpN
[Ingredient #2] Analysis of the boundary term

As(a)(nl (2) — A(a))Fo(a) | ds + on(1).
@ b > 5/3: The first term dominates, should converge to / Z ps(a)(0F F)(a) ds
aeVo
@ b= 5/3 Both terms contribute equally, should converge to
/ 3 [ps(@)(@" F)(a) + Ax(@)(ps(a) — A(a))Fo(a)] ds
a€ Vo
@ b < 5/3: Impose p:(a) = p(a) for all a € V, should converge to / Z p(a)(8" F)(a)
aEVO
Require a series of replacement lemmas — not trivial on state spaces without translational invariance!
[Thankfully, my MPL can be used to establish the replacement lemmas!]
[}
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N — o0):

MY(F) = = (F) fm,”(m—/ot a <<§A+85> Fs) ds

e 3V N 1 5" N _
0, (a () + sy A(a)(ng (a) — p(a))Fs(a) | ds + ow(1).
+ Wng}gvjo{ (O F)E) + guzg ()l (2) ())F()}cw (1
lN—>oo

" 5
0 = m(Ft) — mo(Fo) — / Ts <<§A + 35> F5> ds + (boundary term)
0

[Ingredient #3] Convergence of stochastic processes
@ Show that {m"} is tight in the Skorokhod topology on D([0, T], M) via Aldous’ criterion.

@ Prove that any limit point 7. is absolutely continuous w.r.t. the self-similar measure m, with
me(dx) = p(t, x) dm(x), and p € L?(0, T, F).

@ Finally, prove ! of the weak solution to the heat equation to conclude ! of the limit point.
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € V4. (Otherwise, nonequilibrium.)
The product Bernoulli measure V‘,)V with p = Ay /(A4 + A_) is stationary for the process.

Density fluctuation field (DFF) yt (F)= \/\Vi Z (nt (x) — p)
|

xeVy

()

The corresponding Dynkin’s martingale is

M?’(F):yt( ) y(] / y ANF)ds+oN()
3V 5N
+ \/\W/ gv:o L ( {0 F)(a) + bN3N>\zF( )} ds,

which has QV

W= [ TE 2 3 060 =V (F0) — Foy'e

xeVy yeVy
yrx

[ g @)+ A @)1 — il ) )

IS
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € V4. (Otherwise, nonequilibrium.)
The product Bernoulli measure V‘,)V with p = Ay /(A4 + A_) is stationary for the process.

Density fluctuation field (DFF) yt (F) \/\W XEZVN (nt (x) — p) F(x) J
The corresponding Dynkin’s martingale is
MYUF) = V) = 5P — [T Ak bt on)
3 5"
+ \/\VT/ gons {8 F)(@) + pgn AcF(a )} ds,

which, as N — oo, has the QV of a space-time white noise (with boundary condition)

2
3 “2p(1 — p)t&s(F), where &(F) = E(F)+ Ax Y F2(a)l{ps/3)
acVy
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Density fluctuation field (at equilibrium): Heuristics

Equilibrium < X\, (a) = Ay and A_(a) = A_ for all a € V,. (Otherwise, nonequilibrium.)
The product Bernoulli measure uf’y with p = A /(A + A_) is stationary for the process.

Density fluctuation field (DFF) YNy = \V S (m - ) F(x) J
VIYNI xevy

The corresponding Dynkin's martingale is
rt
MEGF) = DY) = 33'(F) = [ YL (anF)ds + ou()
3 5V
+ — / 7 F)(a) + AsF(a)| ds,
s b B eine s

We then argue that the test function F € domAj be chosen appropriate to each boundary condition such that
the boundary term vanishes as N — oo.

{F € domA : F|v070}, if b<5/3,
domA, :={ {F € domA : (8F)|y, = —AcFly,}, if b=5/3,
{F € domA : (8 F)|y, = 0}, if b>5/3.

For technical reasons (in order to use Mitoma'’s tightness criterion) we use a smaller test function space
Sp := {F € domA, : A,F € domA,}, which can be made into a Frechét space.
Let S; be the topological dual of Sp.
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Ornstein-Uhlenbeck equation with boundary condition

Definition (Ornstein-Uhlenbeck equation)

We say that a random element ) taking values in C([0, T],S}) is a solution to the
Ornstein-Uhlenbeck equation on K with parameter b if:

@ For every F € S,
Mi(F) = Yi(F) = 30(F) — [ %G o) os
and  N:(F) = (M(F))? — g -2p(1 — p)t&,(F)

are Fi-martingales, where #; := o{Vs(F) : s < t} for each t € [0, T].

@ ) is a centered Gaussian Sj-valued random variable with covariance
EL DA(F)(G)] = (1~ ) [ F()Gx)dm(x), VF.G € Sy
K

Moreover, for every F € Sp, the process {V:(F) : t > 0} is Gaussian: the distribution of
Y:(F) conditional upon .%s, s < t, is Gaussian with mean ys(Tfst) and variance

OFS % 2p(1— p)&s(TEF) dr, where {T? : t > 0} is the heat semigroup associated with %é”b.
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O-U limit of equilibrium density fluctuations: a CLT result

1 u
5NEII</EX _ 5N (EEX + bwﬁklo Il) .

Dirichlet (b < §), Robin (b = 5), Neumann (b > %)
Equilibrium < X (a) = Ay and A_(a) = A_ forall a € V.

At

Reservoir Reservoir

Let Qg'b be the probability measure on D([0, T], S;) induced by the DFF YV started from 1/2’ and boundary
parameter b.

Theorem (CLT)

The sequence {le,b}N converges in distribution, as N — oo, to a unique solution of the
Ornstein-Uhlenbeck equation with parameter b (as defined previously).

Key Lemma. T?(Sp) C Sy, for any t > 0. Enough to verify that T2 (L'(K, m)) C domA,, which can be
shown using e.g. the Nash inequality (heat kernel upper bound).
The rest of the argument follows a martingale approach of Kipnis—Landim.
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Density large deviations principle (Dirichlet case)

° QN: Law of the Markov process generated by 5N£REX, with b = 1.
@ M : Space of nonnegative Borel measures on K.
e Fo ::{fGJ:Z f‘\/o :0}.

Theorem (Density LDP: rate |Vy| ~ 23N with good rate function o)

For each closed set C and each open set O of the Skorokhod space D([0, T], M), endowed with
the Skorokhod topology of weak convergence of measures w.r.t. the Dirichlet problem,

1
li — 1og QM[C] < — inf Iy(w), liminf
imsup 7 108 Q7ICT < — fnf, o), lim inf

1 o .
> — .
A log Q"[O] = — inf Jo()

Let M1 = {p € My | p(dx) = p(x) m(dx), 0 < p <1 m-ae} and
Di 1[0, T]:= {m € D([0, T], M41) | m(t, dx) = p(t, x) m(dx), p € L*(0, T,F)}.
Io(m) < 0o <= 7 € Dy 1,£[0, T]; then 3H € C([0, T], A=1(Fo)) N CL((0, T), A~1(Fp)) s.t.

=
Io(m) = %/0 /K p(t,x) (1 — p(t,x)) dI'(Ht) dt .

where dI'(F) is the energy measure on K defined via E(F) = / dr(F).

K
N.B.: For nonconstant F € domé&, dI'(F) L dm. This is a source of major technical difficulties.
Technical Remark. The topology we use guarantees that D, 1 [0, T] is closed.
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A sneak preview of upcoming series of works, and Thank you!

Reservoir

A_(ao y(

1
5N£IKIEX — N (EEX + bwﬁ%oun) )

Symmetric exclusion process with slowed boundary on the
Sierpinski gasket
Dirichlet (b < 3), Robin (b = ), Neumann (b > 3)

Reservoir Reservoir

Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € V. (Otherwise, nonequilibrium.)

(Non)equilibrium density hydrodynamic limit (DRNv") [C.—Gongalves '19]
Ornstein-Uhlenbeck limit of equilibrium density fluctuations (DRNv"). [C.—Gongalves '19]
Large deviations principle for the (non)equilibrium density (Dv") [C.—Hinz '19]

Hydrostatic limit, scaling limit of nonequilibrium density fluctuations (D in progress).
[C.—Franceschini-Gongalves—Menezes '19+] — careful study of two-particle correlations
@ More in the pipeline:

Motion of the tagged particle (a fractional BM on the gasket?).

Add (suitably rescaled) weak asymmetry to the jump rate, prove that the equilibrium density fluctuations
converges (subsequentially) to a stochastic Burgers equation [C. '19+]
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