Random walks, electric networks, moving particle lemma, and hydrodynamic limits

Joe P. Chen

Department of Mathematics Colgate University Hamilton, NY, USA

Most Informal Probability Seminar Mathematical Institute Universiteit Leiden May 21, 2019

イロト イヨト イヨト

Random walks, electric networks, moving particle lemma, and hydrodynamic limits

https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Joe P. Chen (Colgate)

イロト イボト イヨト イヨト

Random walks and electric networks

- Let G = (V, E) be a locally finite connected graph, and c = {c_{xy}}_{xy∈E} be the set of positive weights (conductances) endowed on E.
- The (symmetric) random walk process on the weighted graph (=electric network) (G, c) is an irreducible Markov chain on V with transition probability

$$\mathbf{P}(x,y) = \begin{cases} c_{xy}/c_x, & \text{if } xy \in E, \\ 0, & \text{otherwise.} \end{cases} \qquad c_x := \sum_{z:xz \in E} c_{xz}.$$

• The RW process has $\pi(\cdot) \propto c(\cdot)$ as reversible (invariant) measure, and the associated Dirichlet energy is

$$\mathcal{E}^{\mathrm{RW}}(f) = \langle f, (\mathbf{I} - \mathbf{P})f
angle_{\pi} = \sum_{zw \in E} c_{zw} [f(z) - f(w)]^2, \quad f: V o \mathbb{R}.$$

 $L_{\overline{5}}^{\pm} \overline{5} \overline{5} = U$ (The entries along each row must add up to 1.)

 $\mathbf{P} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{2}{2} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{4} & \frac{1}{4} & 0 & \frac{2}{4} \\ 1 & 2 & 2 & 0 \end{bmatrix}$

イロト イポト イヨト イヨト

4

Random walks and electric networks

- Let G = (V, E) be a locally finite connected graph, and c = {c_{xy}}_{xy∈E} be the set of positive weights (conductances) endowed on E.
- The (symmetric) random walk process on the weighted graph (=electric network) (G, c) is an irreducible Markov chain on V with transition probability

$$\mathbf{P}(x,y) = \begin{cases} c_{xy}/c_x, & \text{if } xy \in E, \\ 0, & \text{otherwise.} \end{cases} \qquad c_x := \sum_{z:xz \in E} c_{xz}.$$

• The RW process has $\pi(\cdot) \propto c(\cdot)$ as reversible (invariant) measure, and the associated Dirichlet energy is

$$\mathcal{E}^{\mathrm{RW}}(f) = \langle f, (\mathbf{I} - \mathbf{P})f
angle_{\pi} = \sum_{zw \in E} c_{zw} [f(z) - f(w)]^2, \quad f: V o \mathbb{R}.$$

• Effective resistance between $A, B \subset V$:

$$R_{ ext{eff}}(A,B) = \sup\left\{ \left[\mathcal{E}^{ ext{RW}}(f)
ight]^{-1} \ \left| \ f: V o \mathbb{R}, \ f|_A = 1, \ f|_B = 0
ight\}
ight.$$

In particular, if $A = \{x\}$ and $B = \{y\}$ we write $R_{\text{eff}}(x, y)$. By definition,

$$[f(x) - f(y)]^2 \leq R_{\text{eff}}(x, y) \mathcal{E}^{\text{RW}}(f), \quad f: V \to \mathbb{R}.$$

Also $R_{\text{eff}}: V \times V \rightarrow \mathbb{R}_+$ is a metric on V.

Overarching question: Can we study Markov processes involving MANY interacting "random walkers" on a weighted graph (G, c)?

Mathematical development started with Spitzer (on the integer lattice). Mathematically tractable models:

- Exclusion process (state space {0,1}^V): Particles perform RWs subject to the exclusion constraint that no two particles can occupy the same vertex at any time.
- **⊘** Zero-range process (state space N₀^V): Particle at x jumps to neighboring y at rate depending on P(x, y) [jump] and the number of particles at x ONLY [zero-range kinetics].

Both models are associated with a conserved quantity—the total # of particles (unless additional dynamics or "reservoirs" are attached).

イロト イボト イヨト イヨト

Particle system #1: Exclusion process

The (symm.) exclusion process on (G, \mathbf{c}) is a Markov chain on $\{0, 1\}^V$ with generator

$$(\mathcal{L}^{\mathrm{EX}}f)(\eta) = \sum_{xy \in E} c_{xy}(\nabla_{xy}f)(\eta). \quad f: \{0,1\}^V \to \mathbb{R}$$

where $(\nabla_{xy}f)(\eta) := f(\eta^{xy}) - f(\eta)$ and $(\eta^{xy})(z) = \begin{cases} \eta(y), & \text{if } z = x, \\ \eta(x), & \text{if } z = y, \\ \eta(z), & \text{otherwise.} \end{cases}$

• Each product Bernoulli measure ν_{α} , $\alpha \in [0, 1]$, with marginal $\nu_{\alpha} \{\eta : \eta(x) = 1\} = \alpha$ for each $x \in V$, is an invariant measure.

• Dirichlet energy:
$$\mathcal{E}^{\mathrm{EX}}(f) = \frac{1}{2} \sum_{zw \in E} c_{zw} \int_{\{0,1\}^V} \left[(\nabla_{xy} f)(\eta) \right]^2 d\nu_{\alpha}(\eta) \ .$$

イロト イボト イヨト イヨト

The zero-range process on (G, \mathbf{c}) is a Markov chain on \mathbb{N}_0^V with generator

$$(\mathcal{L}^{\mathrm{ZR}}f)(\xi) = \sum_{(x,y)\in V^2} \mathbf{P}(x,y)\mathfrak{g}(x,\xi(x))\left[f(\xi+\mathbf{1}_y-\mathbf{1}_x)-f(\xi)\right], \quad f:\mathbb{N}_0^V\to\mathbb{R}.$$

where P is an irreducible jump Markov matrix on V^2 , and $\mathfrak{g}: V \times \mathbb{N}_0 \to \mathbb{R}_+$ is the kinetic rate, $\mathfrak{g}(x, 0) = 0$ always.

• Invariant measure is a product one: $\mu(\xi) = \frac{1}{Z} \prod_{x \in V} \prod_{k=1}^{\xi(x)} \frac{\pi(x)}{\mathfrak{g}(x,k)}$, where π is the invariant

measure for P.

• Dirichlet energy: $\mathcal{E}^{\mathrm{ZR}}(f) = \langle f, -\mathcal{L}^{\mathrm{ZR}}f \rangle_{\mu}$.

イロト イヨト イヨト

Hierarchy of stochastic processes on a fixed graph

Aldous' spectral gap conjecture '92: Is $\lambda_2^{EX}(G) = \lambda_2^{RW}(G)$?

A projection argument easily leads to: $\lambda_2^{RW}(G) \ge \lambda_2^{EX}(G) \ge \lambda_2^{PP}(G)$. For the other direction, suffice to prove that $\lambda_2^{IP}(G) \ge \lambda_2^{RW}(G)$.

Joe P. Chen (Colgate)

RWs, electric networks & particle systems

Э

Random walks, electric networks, **moving particle lemma**, and hydrodynamic limits

• Caputo, Liggett, and Richthammer, J. Amer. Math. Soc. (2010).

• C., Electron. Commun. Probab. (2017).

Image: A matrix and a matrix

 $\begin{array}{l} \text{Interchange process} \quad f: \{\text{Permutations on } V\} \to \mathbb{R} \\ \frac{1}{2} \int \left[f(\eta^{xy}) - f(\eta) \right]^2 d\nu(\eta) \leq R_{\mathrm{eff}}(x,y) \mathcal{E}^{\mathrm{IP}}(f). \\ \text{Moving particle lemma} \end{array}$

↓ PROJECTION ↓

Exclusion process $f : \{0, 1\}^{V} \to \mathbb{R}$ $\frac{1}{2} \int [f(\eta^{xy}) - f(\eta)]^2 d\nu_{\alpha}(\eta) \leq R_{\text{eff}}(x, y) \mathcal{E}^{\text{EX}}(f).$

Moving particle lemma

↓ PROJECTION ↓

Random walk process $f: V \to \mathbb{R}$ $[f(x) - f(y)]^2 \le R_{\text{eff}}(x, y)\mathcal{E}^{\text{RW}}(f).$ Dirichlet principle

(Also a dual version involving flows: Thomson principle)

Energy inequalities

Does the MPL follow trivially from the Dirichlet principle? NO!

However, a common idea is electric network reduction (Schur complementation in linear algebra).

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬ⊙

Idea: Remove vertices (and edges attached to them) without changing the effective conductance between any of the non-removed vertices.

 Suppose we remove the vertex x ∈ V from (G, c), as well as the edges attached to x. Call the reduced graph G_x = (V_x, E_x).

In the linear algebra language, we will reduce the Laplacian ${\bm L}={\bm I}-{\bm P}$ to a new Laplacian ${\bm L}'$ (of one fewer dimension).

This is attained by taking the Schur complement of the (x, x) block in L:

$$\label{eq:Lagrangian} \mathsf{lf} \ \mathsf{L} = \begin{bmatrix} \mathsf{X} & \mathsf{Y} \\ \mathsf{Z} & \mathsf{L}_{xx} \end{bmatrix}, \quad \mathsf{then} \ \mathsf{L}' = \mathsf{X} - \mathsf{Y}(\mathsf{L}_{xx})^{-1}\mathsf{Z} = \mathsf{X} - \mathsf{Y}\mathsf{Z}. \qquad (\mathsf{Recall} \ \mathsf{L}_{xx} = 1.)$$

• In component form, $\mathbf{L}'_{yz} = \mathbf{L}_{yz} - \mathbf{L}_{yx}\mathbf{L}_{xz}$ for $y, z \in V_x$.

Since $\mathbf{L}_{yz}^{(')} = -p_{yz}^{(')} = -\frac{c_{yz}^{(')}}{c_y}$ whenever $y \neq z$, we see that the new conductances on E_x become

$$c'_{yz} = -c_y \mathbf{L}'_{yz} = -c_y (\mathbf{L}_{yz} - \mathbf{L}_{yx} \mathbf{L}_{xz}) = c_{yz} + \frac{c_{yx} c_{xz}}{c_x} =: c_{yz} + \tilde{c}_{yz}.$$

Sac

イロト イボト イヨト イヨト

Let $c_{xy} = \alpha$ and $c_{xz} = \beta$.

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \frac{\alpha}{\alpha+\beta} & \frac{\beta}{\alpha+\beta} & 0 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -\frac{\alpha}{\alpha+\beta} & -\frac{\beta}{\alpha+\beta} & 1 \end{bmatrix}$$

Let L' be the Schur complement of the 1 block in L:

$$\mathbf{L}' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} -\frac{\alpha}{\alpha+\beta} & -\frac{\beta}{\alpha+\beta} \end{bmatrix} = \begin{bmatrix} \frac{\beta}{\alpha+\beta} & -\frac{\beta}{\alpha+\beta} \\ -\frac{\alpha}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta} \end{bmatrix}$$

So $\mathbf{L}'_{yz} = -\frac{\beta}{\alpha+\beta}$. Since $c_y = \alpha$, we get $c'_{yz} = -c_y \mathbf{L}_{yz} = \frac{\alpha\beta}{\alpha+\beta}$, *i.e.*,
 $R'_{yz} = \frac{1}{c'_{yz}} = \frac{1}{\alpha} + \frac{1}{\beta} = R_{xy} + R_{xz}$.

(Resistors in series ADD!)

990

2

イロト イヨト イヨト イヨト

Example 2: Y- Δ transform

Let
$$c_{xy} = \alpha$$
, $c_{xz} = \beta$, $c_{xw} = \gamma$, and $\sigma = \alpha + \beta + \gamma$.

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \alpha/\sigma & \beta/\sigma & \gamma/\sigma & 0 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -\alpha/\sigma & -\beta/\sigma & -\gamma/\sigma & 1 \end{bmatrix}.$$

$$\mathbf{L}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} -\alpha/\sigma & -\beta/\sigma & -\gamma/\sigma \end{bmatrix} = \frac{1}{\sigma} \begin{bmatrix} \beta + \gamma & -\beta & -\gamma \\ -\alpha & \alpha + \gamma & -\gamma \\ -\alpha & -\beta & \alpha + \beta \end{bmatrix}.$$

After a little more algebra we get

$$c'_{yz} = \frac{lpha eta}{\sigma}, \quad c'_{zw} = \frac{eta \gamma}{\sigma}, \quad c'_{wy} = \frac{\gamma lpha}{\sigma}.$$

Joe P. Chen (Colgate)

DQC

3

Proof of Dirichlet's principle via network reduction

$$\mathcal{E}(f) = \sum_{zw \in E} c_{zw} [f(z) - f(w)]^2.$$

In going from G to the reduced graph G_x , energy is

• lost due to the removal of edges attached to x: amount $\sum_{y \in V_x} c_{xy}[f(x) - f(y)]^2$.

 gained due to the increased conductance on the non-removed edges: amount ∑_{yz∈Ey} č_{yz}[f(y) − f(z)]².

Proposition ("Octopus inequality" for electric network). For all $f: V \to \mathbb{R}$,

$$\sum_{y \in V_x} c_{xy} [f(x) - f(y)]^2 \geq \sum_{yz \in E_x} \tilde{c}_{yz} [f(y) - f(z)]^2,$$

Energy lost from removed edges $\geq~$ Energy gained from increased conductances

where equality is attained iff (Lf)(x) = 0.

Proof. An exercise in high school algebra.

Corollary. The Dirichlet energy is monotone non-increasing upon successive network reductions.

By carrying out network reduction one vertex at a time until two vertices z and y are left, we recover Dirichlet's principle: $\mathcal{E}(f) \ge c_{\text{eff}}(z, y)[f(z) - f(y)]^2$.

Why the name "octopus"? The tentacular nature of removing of a vertex and its edges may remind you of an octopus. [est. Pietro Caputo.]

Octopus inequality & Aldous' spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations, Caputo-Liggett-Richthammer JAMS '10 proved for the interchange process:

Theorem (Octopus inequality, IP)

For all $f : S_{|V|} \to \mathbb{R}$,

$$\int \sum_{y \in V_x} c_{xy} [f(\eta^{xy}) - f(\eta)]^2 \, d\nu(\eta) \geq \int \sum_{yz \in E_x} \tilde{c}_{yz} [f(\eta^{yz}) - f(\eta)]^2 \, d\nu(\eta).$$

Energy lost from removed edges \geq Energy gained from increased conductances

This was the key inequality which resolved Aldous' '92 spectral gap conjecture:

$$(\mathsf{OI}) \implies \lambda_2^{\mathrm{IP}}(\mathsf{G}) \ge \lambda_2^{\mathrm{RW}}(\mathsf{G}) \implies_{+\mathsf{proj.}} \lambda_2^{\mathrm{IP}}(\mathsf{G}) = \lambda_2^{\mathrm{EX}}(\mathsf{G}) = \lambda_2^{\mathrm{RW}}(\mathsf{G}).$$

- MathSciNet review of CLR10, by L. Miclo: "One leaves this beautiful paper with the dream that maybe a simpler proof could be found."
- Since then there have been attempts at simplifying the CLR proof, but to little avail.
- Also it was unclear if the octopus has any applications beyond resolving the spectral gap conjecture...

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬ⊙

Octopus inequality & Aldous' spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations, Caputo-Liggett-Richthammer JAMS '10 proved for the interchange process:

Theorem (Octopus inequality, IP)

For all $f : S_{|V|} \to \mathbb{R}$,

$$\int \sum_{y \in V_x} c_{xy} [f(\eta^{xy}) - f(\eta)]^2 \, d\nu(\eta) \geq \int \sum_{yz \in E_x} \tilde{c}_{yz} [f(\eta^{yz}) - f(\eta)]^2 \, d\nu(\eta).$$

Energy lost from removed edges \geq Energy gained from increased conductances

RECENT DEVELOPMENTS — Applications of the octopus:

- C. '17, Moving particle lemma, used to carry out coarse-graining in the exclusion process towards proving hydrodynamic limits.
- Alon-Kozma '18, Improved estimates of mixing times of interchange process, energy level ordering in the Heisenberg ferromagnetic model. arXiv:1811.10537: "The first to use the octopus lemma for something new was Chen."
- (Related) Hermon–Salez '18: Analog of Aldous' spectral gap conjecture for the zero-range process, used to establish comparison theorems for two zero-range processes with the same kinetics on the same graph.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬ⊙

Bounding the energy cost of swapping two particles at x and y in an interacting particle system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

$$\begin{split} & \frac{1}{2} \int \left[f(\eta^{xy}) - f(\eta) \right]^2 d\nu(\eta) \leq R_{\text{eff}}(x, y) \mathcal{E}^{\text{IP}}(f), \quad f : \mathcal{S}_{|V|} \to \mathbb{R}, \\ & \frac{1}{2} \int \left[f(\eta^{xy}) - f(\eta) \right]^2 d\nu_{\alpha}(\eta) \leq R_{\text{eff}}(x, y) \mathcal{E}^{\text{EX}}(f), \quad f : \{0, 1\}^V \to \mathbb{R} \end{split}$$

Proof sketch.

(OI) ⇔ monotonicity of energy under 1-point network reductions. So reduce G successively until two vertices x, y are left, we get

$$\mathcal{E}^{\mathrm{IP}}(f) \geq \cdots \geq rac{1}{2} \int c_{\mathrm{eff}}(x,y) [f(\eta^{xy}) - f(\eta)]^2 d
u(\eta).$$
 MPL for IP

• To obtain the MPL for EX, use the projection of IP onto EX & disintegration of the uniform measure into orthonormal chambers with fixed particle number.

イロト イボト イヨト イヨト

Moving particle lemma for interchange/exclusion [C. ECP '17]

Bounding the energy cost of swapping two particles at x and y in an interacting particle system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

$$\begin{split} &\frac{1}{2}\int \left[f(\eta^{xy})-f(\eta)\right]^2 d\nu(\eta) \leq R_{\mathrm{eff}}(x,y)\mathcal{E}^{\mathrm{IP}}(f), \quad f:\mathcal{S}_{|V|} \to \mathbb{R}, \\ &\frac{1}{2}\int \left[f(\eta^{xy})-f(\eta)\right]^2 d\nu_{\alpha}(\eta) \leq R_{\mathrm{eff}}(x,y)\mathcal{E}^{\mathrm{EX}}(f), \quad f:\{0,1\}^V \to \mathbb{R}. \end{split}$$

Conventional approach is to pick a single path connecting x and y and obtain the energy cost. [Guo–Papanicolaou–Varadhan '88, Diaconis–Saloff-Coste '93].

Works just fine on finite integer lattices, but does NOT always give optimal cost on general weighted graphs.

イロト イヨト イヨト

Bounding the energy cost of swapping two particles at x and y in an interacting particle system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX)

$$\begin{split} & \frac{1}{2}\int \left[f(\eta^{xy}) - f(\eta)\right]^2 d\nu(\eta) \leq R_{\text{eff}}(x,y)\mathcal{E}^{\text{IP}}(f), \quad f:\mathcal{S}_{|V|} \to \mathbb{R}, \\ & \frac{1}{2}\int \left[f(\eta^{xy}) - f(\eta)\right]^2 d\nu_{\alpha}(\eta) \leq R_{\text{eff}}(x,y)\mathcal{E}^{\text{EX}}(f), \quad f:\{0,1\}^V \to \mathbb{R} \end{split}$$

MPL bounds the energy cost by "optimizing electric flow over all paths connecting x and y."

nac

イロト イヨト イヨト

Zero-range process ↔ random walk process

 $(\mathcal{L}^{\mathrm{ZR}}f)(\xi) = \sum_{(x,y)\in V^2} \mathbf{P}(x,y)\mathfrak{g}(x,\xi(x))\left[f(\xi+\mathbf{1}_y-\mathbf{1}_x)-f(\xi)\right], \quad \text{inv. meas. } \mu.$

Let
$$\Omega := \left\{ \xi \in \mathbb{N}_0^V : \sum_{x \in V} \xi(x) = m \right\}$$
 and $\hat{\Omega} := \left\{ \zeta \in \mathbb{N}_0^V : \sum_{x \in V} \zeta(x) = m - 1 \right\}$.
For each $f : \Omega \to \mathbb{R}$ and $\zeta \in \hat{\Omega}$, define $f_{\zeta} : V \to \mathbb{R}$ by $f_{\zeta}(x) = f(\zeta + \mathbf{1}_x)$.

Lemma. For all $f, g : \Omega \to \mathbb{R}$, $\mathcal{E}_{(\mathbf{P},\mathfrak{g},m)}^{\mathrm{ZR}}(f,g) = \sum_{\zeta \in \hat{\Omega}} \mu(\zeta) \langle f_{\zeta}, (\mathbf{I} - \mathbf{P})g_{\zeta} \rangle_{\pi}$. (Jump part decouples)

Theorem [Hermon-Salez '18]. For any two irred. jump matrices P and Q,

$$\min_{\substack{f:\Omega \to \mathbb{R} \\ f \neq 0}} \left\{ \frac{\mathcal{E}_{(\mathbf{P},\mathbf{g},m)}^{ZR}(f,f)}{\mathcal{E}_{(\mathbf{Q},\mathbf{g},m)}^{ZR}(f,f)} \right\} = \min_{\substack{f:V \to \mathbb{R} \\ f \neq 0}} \left\{ \frac{\langle f, (\mathbf{I} - \mathbf{P}) f \rangle_{\pi_{\mathbf{P}}}}{\langle f, (\mathbf{I} - \mathbf{Q}) f \rangle_{\pi_{\mathbf{Q}}}} \right\}.$$

Proposition [C.]. If P is associated to a symm. RW, then we have the MPL

 $\sum_{\zeta \in \hat{\mathbb{Q}}} [f(\zeta + \mathbf{1}_y) - f(\zeta + \mathbf{1}_x)]^2 \mu(\zeta) \le R_{\text{eff}}(x, y) \mathcal{E}_{(\mathbf{P}, \mathfrak{g}, m)}^{Z\mathbf{R}}(f, f).$

Joe P. Chen (Colgate)

For finite $\Lambda \subset V$, denote the **average density over** Λ by $\operatorname{Av}_{\Lambda}[\eta] := |\Lambda|^{-1} \sum_{z \in \Lambda} \eta(z)$. In the proof of the hydrodynamic limit for Markov processes, w/ generator $\mathcal{T}_N \mathcal{L}_N^{\mathrm{EX}}$ on a sequence of graphs $G_N = (V_N, E_N)$, we need to prove that for every t > 0:

Replacement lemma

$$\overline{\lim_{\epsilon \downarrow 0}} \lim_{N \to \infty} \mathbb{E}_{\mu_N} \left[\left| \int_0^t \left(\eta_s^N(x) - \operatorname{Av}_{B(x,\epsilon N)}[\eta_s^N] \right) \, ds \right| \right] = 0, \quad x \in V_N.$$

where

- $\{\eta_t^N : t \ge 0\}$ is the exclusion process generated by $\mathcal{T}_N \mathcal{L}_N^{\mathrm{EX}}$, where \mathcal{T}_N is the diffusive time acceleration factor.
- μ_N can be any measure on $\{0,1\}^{V_N}$.
- B(x, r) is a "ball" of radius r centered at x (in the graph metric).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのぐ

MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator $\mathcal{T}_N \mathcal{L}_N^{\text{EX}}$ on a sequence of graphs $G_N = (V_N, E_N)$, we need to prove that for every t > 0:

Replacement lemma

$$\overline{\lim_{\epsilon \downarrow 0}} \overline{\lim_{N \to \infty}} \mathbb{E}_{\mu_N} \left[\left| \int_0^t g(\eta_s^N) \, ds \right| \right] = 0, \text{ where } g(\eta) := \eta(x) - \operatorname{Av}_{B(x,\epsilon N)}[\eta], \ x \in V_N.$$

The usual method to control additive functionals of the EX process is to employ the entropy inequality, Jensen's inequality, and the Feynman-Kac formula:

$$\mathbb{E}_{\mu_{N}}\left[\left|\int_{0}^{t} g(\eta_{s}^{N}) ds\right|\right] \leq \frac{H(\mu_{N}|\nu_{\rho(\cdot)}^{N})}{\kappa|V_{N}|} + \frac{1}{\kappa|V_{N}|} \sup_{f} \left\{\int g(\eta)f(\eta)d\nu_{\rho(\cdot)}^{N}(\eta) - \frac{\mathcal{T}_{N}}{\kappa|V_{N}|} \langle \sqrt{f}, -\mathcal{L}_{N}\sqrt{f} \rangle_{\nu_{\rho(\cdot)}^{N}}\right\}$$

where

• $\rho(\cdot) \in \operatorname{dom} \mathcal{E}$ is a (possibly non)constant reference density profile.

•
$$H(\mu|\nu) = \int \log\left(\frac{d\mu}{d\nu}\right) d\mu$$
 is the relative entropy of μ w.r.t. ν , assumed to be $\mathcal{O}(|V_N|)$.

- κ > 0.
- The supremum is taken over all prob. densities f w.r.t. the product Bernoulli measure $\nu_{\rho(\cdot)}^N$.

3

イロト 不得 トイヨト イヨト

MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator $\mathcal{T}_N \mathcal{L}_N^{\text{EX}}$ on a sequence of graphs $G_N = (V_N, E_N)$, we need to prove that for every t > 0:

Replacement lemma

$$\varlimsup_{\varepsilon\downarrow 0} \varlimsup_{N\to\infty} \mathbb{E}_{\mu_N} \left[\left| \int_0^t g(\eta_s^N) \, ds \right| \right] = 0, \text{ where } g(\eta) := \eta(x) - \operatorname{Av}_{B(x, \epsilon N)}[\eta], \ x \in V_N.$$

Assume for this discussion that $\rho(\cdot) = \rho$ constant. We wish to estimate

$$\int g(\eta)f(\eta)d\nu_{\rho}^{N}(\eta) - \frac{\mathcal{T}_{N}}{\kappa|V_{N}|} \langle \sqrt{f}, -\mathcal{L}_{N}\sqrt{f} \rangle_{\nu_{\rho}^{N}}$$

independent of f and the carré du champ

$$\mathcal{D}_{N}(\sqrt{f},\nu_{\rho}^{N}) := \frac{1}{2} \int \sum_{zw \in E_{N}} c_{zw} \left(\sqrt{f(\eta^{zw})} - \sqrt{f(\eta)}\right)^{2} d\nu_{\rho}^{N}(\eta).$$

Using the Cauchy-Schwarz (Young) inequality and several elementary tricks, we get for any A > 0,

$$\int g(\eta)f(\eta) \, d\nu_{\rho}^{N}(\eta) \leq \frac{1}{2|B|} \sum_{z \in B} \left\{ \frac{A}{2} \int (\eta(z) - \eta(x))^{2} \left(\sqrt{f(\eta^{zx})} + \sqrt{f(\eta)} \right)^{2} \, d\nu_{\rho}^{N}(\eta) + \frac{1}{2A} \int \left(\sqrt{f(\eta^{zx})} - \sqrt{f(\eta)} \right)^{2} \, d\nu_{\rho}^{N}(\eta) \right\}. \quad (B = B(x, \epsilon N))$$

3

Sac

イロト 不得下 イヨト イヨト

MPL & coarse-graining

In the proof of the hydrodynamic limit for Markov processes, w/ generator $\mathcal{T}_N \mathcal{L}_N^{\text{EX}}$ on a sequence of graphs $G_N = (V_N, E_N)$, we need to prove that for every t > 0:

Replacement lemma

$$\overline{\lim_{\epsilon \downarrow 0}} \prod_{N \to \infty} \mathbb{E}_{\mu_N} \left[\left| \int_0^t g(\eta_s^N) \, ds \right| \right] = 0, \text{ where } g(\eta) := \eta(x) - \operatorname{Av}_{B(x,\epsilon N)}[\eta], \ x \in V_N.$$

This last term needs to be bounded by something times the carré du champ

$$\mathcal{D}_N(\sqrt{f},\nu_{\rho}^N) := \frac{1}{2} \int \sum_{zw \in E_N} c_{zw} \left(\sqrt{f(\eta^{zw})} - \sqrt{f(\eta)} \right)^2 \, d\nu_{\rho}^N(\eta).$$

Use the MPL:

$$\begin{split} \frac{1}{2|B|} \sum_{z \in B} \int \left(\sqrt{f(\eta^{zx})} - \sqrt{f(\eta)} \right)^2 \, d\nu_{\rho}^{N}(\eta) &\leq \frac{1}{|B|} \sum_{z \in B} R_{\text{eff}}(z, x) \mathcal{D}_{N}(\sqrt{f}, \nu_{\rho}^{N}) \\ &\leq \text{diam}_{R}(B) \mathcal{D}_{N}(\sqrt{f}, \nu_{\rho}^{N}), \end{split}$$

where $\operatorname{diam}_R(B)$ is the diameter of B in the resistance metric. $(B = B(x, \epsilon N))$ Assuming that $\frac{|V_N|}{\mathcal{T}_N}\operatorname{diam}_R(B)$ is bounded for all N—this holds for **resistance spaces** in general— we can then choose A wisely to bound the variational functional from above by an expression which tends to 0 in the limit. This proves the replacement lemma.

Joe P. Chen (Colgate)

Sac

イロト 不得 トイヨト イヨト 二日

In the proof of the hydrodynamic limit for Markov processes, w/ generator $\mathcal{T}_N \mathcal{L}_N^{\text{EX}}$ on a sequence of graphs $G_N = (V_N, E_N)$, we need to prove that for every t > 0:

Replacement lemma

$$\overline{\lim_{\varepsilon \downarrow 0}} \overline{\lim_{N \to \infty}} \mathbb{E}_{\mu_N} \left[\left| \int_0^t g(\eta_s^N) \, ds \right| \right] = 0, \text{ where } g(\eta) := \eta(x) - \operatorname{Av}_{B(x, \epsilon N)}[\eta], \ x \in V_N.$$

- AFAIK this is the first time such an argument works on a non-lattice weighted graph, where translational invariance is absent.
- Other usages of MPL: Local 2-blocks estimate [C. '17]; 2nd-order Boltzmann-Gibbs principle for equilibrium density fluctuations [C. '19+].
- Another instance where one needs to prove such a replacement lemma in the absence of translational invariance: Studying non-equilibrium density fluctuations on (Z/NZ)^d.

Jara-Menezes '18 came up with their coarse-graining approach, called the "flow lemma," which utilizes mass distribution on the lattice, and is reminiscent of the divisible sandpile problem [Levine-Peres '09].

Э

イロト 不得下 イヨト イヨト

Random walks, electric networks, moving particle lemma, and **hydrodynamic limits**

Scaling limits of empirical density in the boundary-driven SEP on the Sierpinski gasket

- LLN & CLT: Joint work with Patrícia Gonçalves (IST Lisboa), arXiv:1904.08789.
- LDP: Joint work with Michael Hinz (Bielefeld), preprint soon.

Adding reservoirs (Glauber dynamics) to the exclusion process

Designate a finite boundary set $\partial V \subset V$. For each $a \in \partial V$:

- At rate $\lambda_+(a)$, $\eta(a) = 0 \rightarrow \eta(a) = 1$ (birth).
- At rate $\lambda_{-}(a)$, $\eta(a) = 1 \rightarrow \eta(a) = 0$ (death).

 $\text{Formally, } (\mathcal{L}^{\text{boun}}_{\partial V} f)(\eta) = \sum_{a \in \partial V} [\lambda_{+}(a)(1-\eta(a)) + \lambda_{-}(a)\eta(a)][f(\eta^{a}) - f(\eta)], \quad f: \{0,1\}^{V} \to \mathbb{R}, \text{ where } f(\eta^{a}) = 0 \text{ for all } f(\eta^{a}) + 0 \text{ forall } f(\eta^$

$$\eta^a(z) = \left\{ egin{array}{cc} 1 - \eta(a), & ext{if } z = a, \ \eta(z), & ext{otherwise}. \end{array}
ight.$$

- 1D boundary-driven simple exclusion process: generator $N^2\left(\mathcal{L}_{\{1,2,\cdots,N-1\}}^{\mathrm{EX}} + \mathcal{L}_{\{1,N-1\}}^{\mathrm{boun}}\right)$.
- $\bullet\,$ Has been studied extensively for the past \sim 15 years: Hydrodynamic limits, fluctuations, large deviations, etc.
- Difficulties: # of particles is no longer conserved; the invariant measure is in general not explicit.

Joe P. Chen (Colgate)

イロト イヨト イヨト

- Today's message: On state spaces with spectral dimension d_{spec} ∈ [1, 2), we have a path towards proving scaling limits of SSEP/WASEP w/o requiring translational invariance.
- Open question: Prove scaling limits of boundary-driven SSEP/WASEP on state spaces with $d_{\rm spec} \geq 2$.

イロト イヨト イヨト

- Construction of Brownian motion with invariant measure *m* (the standard self-similar measure) as scaling limit of RWs accelerated by T_N = 5^N.
 [Goldstein '87, Kusuoka '88, Barlow-Perkins '88]
- A robust notion of calculus on SG which in some sense mimics (but in many other senses differs from) calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.
 [Kigami, Analysis on Fractals '01; Strichartz, Differential Equations on Fractals '06]

What is the analog of "
$$\int_{K} |\nabla f|^2 dx$$
" in the fractal setting?

Corresponding domain—analog of $H^1(K, dx)$?

• A good model for rigorously studying (non)equilibrium stochastic dynamics with \geq 3 boundary reservoirs.

化口水 化固水 化压水 化压水

Boundary-driven exclusion process on the Sierpinski gasket

- Construction of Brownian motion with invariant measure *m* (the standard self-similar measure) as scaling limit of RWs accelerated by T_N = 5^N.
 [Goldstein '87, Kusuoka '88, Barlow-Perkins '88]
- A robust notion of calculus on SG, which in some sense mimics (but in many other senses differs from) calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc. [Kigami, Analysis on Fractals '01; Strichartz, Differential Equations on Fractals '06]

$$\begin{split} \mathcal{E}(f) &= \lim_{N \to \infty} \frac{5^N}{3^N} \sum_{xy \in E_N} (f(x) - f(y))^2, \quad f \in L^2(K, m). \\ \mathcal{F} &:= \left\{ f \in L^2(K, m) : \mathcal{E}(f) < +\infty \right\}. \end{split}$$

• A good model for rigorously studying (non)equilibrium stochastic dynamics with \geq 3 boundary reservoirs.

化口压 化间压 化压压 化压压

Boundary-driven exclusion process on the Sierpinski gasket

Parameter b > 0 governs the inverse speed (relative to the bulk jump rate) at which the reservoir injects/extracts particles into/from the boundary vertices V_0 .

Assume that sequence of probability measures $\{\mu_N\}_{N\geq 1}$ on $\{0,1\}^{V_N}$ is associated to a density profile $\varrho: K \to [0,1]$: for any continuous function $F: K \to \mathbb{R}$ and any $\delta > 0$,

$$\lim_{N\to\infty}\mu_N\left\{\eta\in\{0,1\}^{V_N}: \left|\frac{1}{|V_N|}\sum_{x\in V_N}F(x)\eta(x)-\int_KF(x)\varrho(x)\,dm(x)\right|>\delta\right\}=0.$$

Given the process $\{\eta_t^N : t \ge 0\}$ generated by $5^N \mathcal{L}_N^{\text{bEX}}$, the **empirical density measure** π_t^N given by

$$\pi_t^{N} = \frac{1}{|V_N|} \sum_{x \in V_N} \eta_t^{N}(x) \delta_{\{x\}}$$

and for any test function $F: K \to \mathbb{R}$, we denote the integral of F wrt π_t^N by $\pi_t^N(F)$ which equals

$$\pi_t^N(F) = \frac{1}{|V_N|} \sum_{x \in V_N} \eta_t^N(x) F(x).$$

Claim. The sequence $\{\pi^N_{N}\}_N$ converges in the Skorokhod topology on $D([0, T], \mathcal{M}_+)$ to the unique measure π . with $d\pi_{\cdot}(x) = \rho(\cdot, x) dm(x)$. For any $t \in [0, T]$, any continuous $F : K \to \mathbb{R}$ and any $\delta > 0$,

$$\lim_{N\to\infty}\mu_N\left\{\eta^N_{\cdot}: \left|\frac{1}{|V_N|}\sum_{x\in V_N}\eta^N_t(x)F(x)-\int_K F(x)\rho(t,x)\,dm(x)\right|>\delta\right\}=0,$$

Joe P. Chen (Colgate)

$$egin{aligned} 5^{N}\mathcal{L}_{N}^{ ext{bEX}} &= 5^{N}\left(\mathcal{L}_{N}^{ ext{EX}} + rac{1}{b^{N}}\mathcal{L}_{N}^{ ext{boun}}
ight). \ \lambda_{\Sigma}(a) &= \lambda_{+}(a) + \lambda_{-}(a) \ ar{
ho}(a) &= rac{\lambda_{+}(a)}{\lambda_{\Sigma}(a)} \end{aligned}$$

Theorem (Density hydrodynamic limit)

For any $t \in [0, T]$, any continuous $F : K \to \mathbb{R}$ and any $\delta > 0$,

$$\lim_{N\to\infty}\mu_N\left\{\eta^N_{\cdot}: \left|\frac{1}{|V_N|}\sum_{x\in V_N}\eta^N_t(x)F(x)-\int_{\mathcal{K}}F(x)\rho(t,x)\,dm(x)\right|>\delta\right\}=0,$$

where ρ is the unique weak solution of the heat equation with Dirichlet boundary condition if $b<\frac{5}{3}:$

$$\begin{cases} \partial_t \rho(t,x) = \frac{2}{3} \Delta \rho(t,x), & t \in [0,T], \ x \in K \setminus V_0, \\ \rho(t,a) = \overline{\rho}(a), & t \in (0,T], \ a \in V_0, \\ \rho(0,x) = \varrho(x), & x \in K. \end{cases}$$

$$egin{aligned} 5^{N}\mathcal{L}_{N}^{ ext{bEX}} &= 5^{N}\left(\mathcal{L}_{N}^{ ext{EX}} + rac{1}{b^{N}}\mathcal{L}_{N}^{ ext{boun}}
ight). \ \lambda_{\Sigma}(a) &= \lambda_{+}(a) + \lambda_{-}(a) \ ar{
ho}(a) &= rac{\lambda_{+}(a)}{\lambda_{\Sigma}(a)} \end{aligned}$$

Theorem (Density hydrodynamic limit)

For any $t \in [0, T]$, any continuous $F : K \to \mathbb{R}$ and any $\delta > 0$,

$$\lim_{N\to\infty}\mu_N\left\{\eta^N_{\cdot}: \left|\frac{1}{|V_N|}\sum_{x\in V_N}\eta^N_t(x)F(x)-\int_K F(x)\rho(t,x)\,dm(x)\right|>\delta\right\}=0,$$

where ρ is the unique weak solution of the heat equation with Neumann boundary condition if $b > \frac{5}{3}$:

$$\begin{cases} \partial_t \rho(t, x) = \frac{2}{3} \Delta \rho(t, x), & t \in [0, T], \ x \in K \setminus V_0, \\ (\partial^{\perp} \rho)(t, a) = 0, & t \in (0, T], \ a \in V_0, \\ \rho(0, x) = \varrho(x), & x \in K. \end{cases}$$

-

$$egin{aligned} 5^{N}\mathcal{L}_{N}^{ ext{bEX}} &= 5^{N}\left(\mathcal{L}_{N}^{ ext{EX}} + rac{1}{b^{N}}\mathcal{L}_{N}^{ ext{boun}}
ight). \ \lambda_{\Sigma}(a) &= \lambda_{+}(a) + \lambda_{-}(a) \ ar{
ho}(a) &= rac{\lambda_{+}(a)}{\lambda_{\Sigma}(a)} \end{aligned}$$

Theorem (Density hydrodynamic limit)

For any $t \in [0, T]$, any continuous $F : K \to \mathbb{R}$ and any $\delta > 0$,

$$\lim_{N\to\infty}\mu_N\left\{\eta^N_{\cdot}: \left|\frac{1}{|V_N|}\sum_{x\in V_N}\eta^N_t(x)F(x)-\int_K F(x)\rho(t,x)\,dm(x)\right|>\delta\right\}=0,$$

where ρ is the unique weak solution of the heat equation with linear Robin boundary condition if $b=\frac{5}{3}$:

$$\begin{cases} \partial_t \rho(t,x) = \frac{2}{3} \Delta \rho(t,x), & t \in [0,T], \ x \in K \setminus V_0, \\ (\partial^{\perp} \rho)(t,a) = -\lambda_{\Sigma}(a)(\rho(t,a) - \bar{\rho}(a)), & t \in (0,T], \ a \in V_0, \\ \rho(0,x) = \varrho(x), & x \in K. \end{cases}$$

Joe P. Chen (Colgate)

Analysis of Dynkin's martingale (which has QV tending to 0 as $N \to \infty$):

$$\begin{split} \mathcal{M}_t^N(F) &:= \pi_t^N(F_t) - \pi_0^N(F_0) - \int_0^t \pi_s^N\left(\left(\frac{2}{3}\Delta + \partial_s\right)F_s\right) \, ds \\ &+ \int_0^t \frac{3^N}{|V_N|} \sum_{a \in V_0} \left[\eta_s^N(a)(\partial^\perp F_s)(a) + \frac{5^N}{3^N b^N}\lambda_{\Sigma}(a)(\eta_s^N(a) - \bar{\rho}(a))F_s(a)\right] \, ds + o_N(1). \end{split}$$

[Ingredient #1] Analysis on fractals

Convergence of discrete Laplacian to the continuous counterpart; normal derivatives at the boundary; integration by parts formula ... [Kigami '01, Strichartz '06].

Э

DQC

イロト イボト イヨト イヨト

Analysis of Dynkin's martingale (which has QV tending to 0 as $N \to \infty$):

$$\begin{split} \mathcal{M}_t^N(F) &:= \pi_t^N(F_t) - \pi_0^N(F_0) - \int_0^t \pi_s^N\left(\left(\frac{2}{3}\Delta + \partial_s\right)F_s\right) \, ds \\ &+ \int_0^t \frac{3^N}{|V_N|} \sum_{a \in V_0} \left[\eta_s^N(a)(\partial^\perp F_s)(a) + \frac{5^N}{3^N b^N}\lambda_{\Sigma}(a)(\eta_s^N(a) - \bar{\rho}(a))F_s(a)\right] \, ds + o_N(1). \end{split}$$

[Ingredient #1] Analysis on fractals

This part will produce the weak formulation of the heat equation.

Э

DQC

イロト イヨト イヨト イヨト

Heuristics for hydrodynamics

Analysis of Dynkin's martingale (which has QV tending to 0 as $N \to \infty$):

$$\begin{split} \mathcal{M}_t^N(F) &:= \pi_t^N(F_t) - \pi_0^N(F_0) - \int_0^t \pi_s^N\left(\left(\frac{2}{3}\Delta + \partial_s\right)F_s\right) \, ds \\ &+ \int_0^t \frac{3^N}{|V_N|} \sum_{a \in V_0} \left[\eta_s^N(a)(\partial^\perp F_s)(a) + \frac{5^N}{3^N b^N}\lambda_{\Sigma}(a)(\eta_s^N(a) - \bar{\rho}(a))F_s(a)\right] \, ds + o_N(1). \end{split}$$

[Ingredient #2] Analysis of the boundary term

- b > 5/3: The first term dominates, should converge to $\int_0^t \frac{2}{3} \sum_{i,j} \rho_s(a) (\partial^{\perp} F_s)(a) ds$
- b = 5/3: Both terms contribute equally, should converge to $\int_0^{\mathfrak{r}} \frac{2}{3} \sum_{s=V} \left[\rho_s(\mathfrak{a})(\partial^{\perp} F_s)(\mathfrak{a}) + \lambda_{\Sigma}(\mathfrak{a})(\rho_s(\mathfrak{a}) - \bar{\rho}(\mathfrak{a}))F_s(\mathfrak{a}) \right] ds$
- b < 5/3: Impose $\rho_t(a) = \bar{\rho}(a)$ for all $a \in V_0$, should converge to $\int_0^t \frac{2}{3} \sum \bar{\rho}(a) (\partial^{\perp} F_s)(a)$

Require a series of replacement lemmas — not trivial on state spaces without translational invariance! [Thankfully, my MPL can be used to establish the replacement lemmas!]

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - のへで

Heuristics for hydrodynamics

Analysis of Dynkin's martingale (which has QV tending to 0 as $N \to \infty$):

[Ingredient #3] Convergence of stochastic processes

- Show that $\{\pi^N_{\cdot}\}_N$ is tight in the Skorokhod topology on $D([0, T], \mathcal{M}_+)$ via Aldous' criterion.
- Prove that any limit point π . is absolutely continuous w.r.t. the self-similar measure m, with $\pi_t(dx) = \rho(t, x) dm(x)$, and $\rho \in L^2(0, T, \mathcal{F})$.
- Finally, prove ! of the weak solution to the heat equation to conclude ! of the limit point.

Э

イロト イボト イヨト イヨト

Density fluctuation field (at equilibrium): Heuristics

Equilibrium $\Leftrightarrow \lambda_+(a) = \lambda_+$ and $\lambda_-(a) = \lambda_-$ for all $a \in V_0$. (Otherwise, nonequilibrium.) The product Bernoulli measure ν_{ρ}^N with $\rho = \lambda_+/(\lambda_+ + \lambda_-)$ is stationary for the process.

Density fluctuation field (DFF)
$$\mathcal{Y}_t^N(F) = \frac{1}{\sqrt{|V_N|}} \sum_{x \in V_N} \left(\eta_t^N(x) - \rho \right) F(x)$$

The corresponding Dynkin's martingale is

$$\begin{aligned} \mathcal{M}_{t}^{N}(F) &= \mathcal{Y}_{t}^{N}(F) - \mathcal{Y}_{0}^{N}(F) - \int_{0}^{t} \mathcal{Y}_{s}^{N}(\Delta_{N}F) \, ds + o_{N}(1) \\ &+ \frac{3^{N}}{\sqrt{|V_{N}|}} \int_{0}^{t} \sum_{a \in V_{0}} \bar{\eta}_{s}^{N}(a) \left[(\partial_{N}^{\perp}F)(a) + \frac{5^{N}}{b^{N}3^{N}} \lambda_{\Sigma}F(a) \right] \, ds, \end{aligned}$$

which has QV

$$\begin{split} \langle M^{N}(F) \rangle_{t} &= \int_{0}^{t} \frac{5^{N}}{|V_{N}|^{2}} \sum_{x \in V_{N}} \sum_{\substack{y \in V_{N} \\ y \sim x}} \sum_{x \in V_{N}} (\eta_{s}^{N}(x) - \eta_{s}^{N}(y))^{2} (F(x) - F(y))^{2} ds \\ &+ \int_{0}^{t} \sum_{a \in V_{0}} \frac{5^{N}}{b^{N} |V_{N}|^{2}} \{\lambda_{-}(a) \eta_{s}^{N}(a) + \lambda_{+}(a) (1 - \eta_{s}^{N}(a))\} F^{2}(a) ds \end{split}$$

Joe P. Chen (Colgate)

イロト イヨト イヨト

Equilibrium $\Leftrightarrow \lambda_+(a) = \lambda_+$ and $\lambda_-(a) = \lambda_-$ for all $a \in V_0$. (Otherwise, **nonequilibrium**.) The product Bernoulli measure ν_{ρ}^N with $\rho = \lambda_+/(\lambda_+ + \lambda_-)$ is stationary for the process.

Density fluctuation field (DFF)
$$\mathcal{Y}_{t}^{N}(F) = \frac{1}{\sqrt{|V_{N}|}} \sum_{x \in V_{N}} \left(\eta_{t}^{N}(x) - \rho \right) F(x)$$

The corresponding Dynkin's martingale is

$$\mathcal{M}_{t}^{N}(F) = \mathcal{Y}_{t}^{N}(F) - \mathcal{Y}_{0}^{N}(F) - \int_{0}^{t} \mathcal{Y}_{s}^{N}(\Delta_{N}F) \, ds + o_{N}(1) \\ + \frac{3^{N}}{\sqrt{|V_{N}|}} \int_{0}^{t} \sum_{a \in V_{0}} \bar{\eta}_{s}^{N}(a) \left[(\partial_{N}^{\perp}F)(a) + \frac{5^{N}}{b^{N}3^{N}} \lambda_{\Sigma}F(a) \right] \, ds,$$

which, as $N \to \infty$, has the QV of a space-time white noise (with boundary condition)

$$\frac{2}{3} \cdot 2\rho(1-\rho)t\mathscr{E}_b(F), \quad \text{where } \mathscr{E}_b(F) = \mathcal{E}(F) + \lambda_{\Sigma} \sum_{a \in V_0} F^2(a) \mathbf{1}_{\{b=5/3\}}$$

イロト イボト イヨト イヨト

Density fluctuation field (at equilibrium): Heuristics

Equilibrium $\Leftrightarrow \lambda_+(a) = \lambda_+$ and $\lambda_-(a) = \lambda_-$ for all $a \in V_0$. (Otherwise, **nonequilibrium**.) The product Bernoulli measure ν_{ρ}^N with $\rho = \lambda_+/(\lambda_+ + \lambda_-)$ is stationary for the process.

Density fluctuation field (DFF)
$$\mathcal{Y}_t^N(F) = \frac{1}{\sqrt{|V_N|}} \sum_{x \in V_N} \left(\eta_t^N(x) - \rho \right) F(x)$$

The corresponding Dynkin's martingale is

$$\begin{split} \mathcal{M}_{t}^{N}(F) &= \mathcal{Y}_{t}^{N}(F) - \mathcal{Y}_{0}^{N}(F) - \int_{0}^{t} \mathcal{Y}_{s}^{N}(\Delta_{N}F) \, ds + o_{N}(1) \\ &+ \frac{3^{N}}{\sqrt{|V_{N}|}} \int_{0}^{t} \sum_{a \in V_{0}} \bar{\eta}_{s}^{N}(a) \left[(\partial_{N}^{\perp}F)(a) + \frac{5^{N}}{b^{N}3^{N}} \lambda_{\Sigma}F(a) \right] \, ds, \end{split}$$

We then argue that the test function $F \in \text{dom}\Delta_b$ be chosen appropriate to each boundary condition such that the boundary term vanishes as $N \to \infty$.

$$\mathrm{dom}\Delta_b := \left\{ \begin{array}{ll} \{F\in\mathrm{dom}\Delta:F|_{V_0}=0\}, & \text{if }b<5/3,\\ \{F\in\mathrm{dom}\Delta:(\partial^\perp F)|_{V_0}=-\lambda_\Sigma F|_{V_0}\}, & \text{if }b=5/3,\\ \{F\in\mathrm{dom}\Delta:(\partial^\perp F)|_{V_0}=0\}, & \text{if }b>5/3. \end{array} \right.$$

For technical reasons (in order to use Mitoma's tightness criterion) we use a smaller test function space $S_b := \{F \in \mathrm{dom}\Delta_b : \Delta_b F \in \mathrm{dom}\Delta_b\}$, which can be made into a Frechét space. Let S'_b be the topological dual of S_b .

イロト イボト イヨト イヨト

Definition (Ornstein-Uhlenbeck equation)

We say that a random element \mathcal{Y} taking values in $C([0, T], S'_b)$ is a solution to the **Ornstein-Uhlenbeck equation** on K with parameter b if:

• For every $F \in S_b$,

$$\mathcal{M}_t(F) = \mathcal{Y}_t(F) - \mathcal{Y}_0(F) - \int_0^t \mathcal{Y}_s(\frac{2}{3}\Delta_b F) \, ds$$

and $\mathcal{N}_t(F) = (\mathcal{M}_t(F))^2 - \frac{2}{3} \cdot 2\rho(1-\rho)t\mathscr{E}_b(F)$

are \mathscr{F}_t -martingales, where $\mathscr{F}_t := \sigma\{\mathcal{Y}_s(F) : s \leq t\}$ for each $t \in [0, T]$.

 \mathfrak{G} \mathcal{Y}_0 is a centered Gaussian \mathcal{S}'_b -valued random variable with covariance

$$\mathbb{E}^b_\rho\left[\mathcal{Y}_0(F)\mathcal{Y}_0(G)\right] = \rho(1-\rho)\int_K F(x)G(x)\,dm(x), \quad \forall F,G\in\mathcal{S}_b.$$

Moreover, for every $F \in S_b$, the process $\{\mathcal{Y}_t(F) : t \ge 0\}$ is Gaussian: the distribution of $\mathcal{Y}_t(F)$ conditional upon \mathscr{F}_s , s < t, is Gaussian with mean $\mathcal{Y}_s(\tilde{\mathsf{T}}^b_{t-s}F)$ and variance $\int_0^{t-s} \frac{2}{3} \cdot 2\rho(1-\rho)\mathscr{E}_b(\tilde{\mathsf{T}}^b_rF) \, dr$, where $\{\tilde{\mathsf{T}}^b_t : t > 0\}$ is the heat semigroup associated with $\frac{2}{3}\mathscr{E}_b$.

イロト イヨト イヨト

O-U limit of equilibrium density fluctuations: a CLT result

$$5^{N}\mathcal{L}_{N}^{\mathrm{bEX}}=5^{N}\left(\mathcal{L}_{N}^{\mathrm{EX}}+\frac{1}{b^{N}}\mathcal{L}_{N}^{\mathrm{boun}}\right).$$

Dirichlet $(b < \frac{5}{3})$, Robin $(b = \frac{5}{3})$, Neumann $(b > \frac{5}{3})$ Equilibrium $\Leftrightarrow \lambda_{+}(a) = \lambda_{+}$ and $\lambda_{-}(a) = \lambda_{-}$ for all $a \in V_{0}$.

Let $\mathbb{Q}^{N,b}_{\rho}$ be the probability measure on $D([0, T], \mathcal{S}'_b)$ induced by the DFF \mathcal{Y}^N_{\cdot} started from ν^N_{ρ} and boundary parameter *b*.

Theorem (CLT)

The sequence $\{\mathbb{Q}^{N,b}_{\rho}\}_N$ converges in distribution, as $N \to \infty$, to a unique solution of the Ornstein-Uhlenbeck equation with parameter b (as defined previously).

Key Lemma. $\tilde{T}_t^b(S_b) \subset S_b$ for any t > 0. Enough to verify that $\tilde{T}_t^b(L^1(K, m)) \subset \text{dom}\Delta_b$, which can be shown using *e.g.* the Nash inequality (heat kernel upper bound). The rest of the argument follows a martingale approach of Kipnis–Landim.

イロト イポト イヨト イヨト 三日

Density large deviations principle (Dirichlet case)

- \mathbb{Q}^N : Law of the Markov process generated by $5^N \mathcal{L}_N^{\mathrm{bEX}}$, with b = 1.
- \mathcal{M}_+ : Space of nonnegative Borel measures on K.
- $\mathcal{F}_0 := \{ f \in \mathcal{F} : f |_{V_0} = 0 \}.$

Theorem (Density LDP: rate $|V_N| \sim \frac{3}{2} 3^N$ with good rate function I_0)

For each closed set C and each open set O of the Skorokhod space $D([0, T], M_+)$, endowed with the Skorokhod topology of weak convergence of measures w.r.t. the Dirichlet problem,

$$\limsup_{N\to\infty}\frac{1}{|V_N|}\log\mathbb{Q}^N[\mathcal{C}]\leq -\inf_{\pi\in\mathcal{C}}I_0(\pi),\quad \liminf_{N\to\infty}\frac{1}{|V_N|}\log\mathbb{Q}^N[\mathcal{O}]\geq -\inf_{\pi\in\mathcal{O}}I_0(\pi).$$

Let $\mathcal{M}_{+,1} = \{\mu \in \mathcal{M}_+ \mid \mu(dx) = \rho(x) \ m(dx), \ 0 \le \rho \le 1 \ m$ -a.e.} and

$$D_{+,1,\mathcal{E}}[0,T] := \left\{ \pi \in D([0,T], \mathcal{M}_{+,1}) \mid \pi(t,dx) = \rho(t,x) \, m(dx), \ \rho \in L^2(0,T,\mathcal{F}) \right\}.$$

 $I_0(\pi) < \infty \Longleftrightarrow \pi \in D_{+,1,\mathcal{E}}[0,T]; \text{ then } \exists H \in C([0,T],\Delta^{-1}(\mathcal{F}_0)) \cap C^1((0,T),\Delta^{-1}(\mathcal{F}_0)) \text{ s.t.}$

$$I_{0}(\pi) = \frac{1}{2} \int_{0}^{T} \int_{K} \rho(t, x) (1 - \rho(t, x)) \ d\Gamma(H_{t}) \ dt$$

where $d\Gamma(F)$ is the energy measure on K defined via $\mathcal{E}(F) = \int_{K} d\Gamma(F)$.

N.B.: For nonconstant $F \in \operatorname{dom} \mathcal{E}$, $d\Gamma(F) \perp dm$. This is a source of major technical difficulties. *Technical Remark.* The topology we use guarantees that $D_{+,1,\mathcal{E}}[0, T]$ is closed.

Joe P. Chen (Colgate)

nan

A sneak preview of upcoming series of works, and Thank you!

$$5^{N}\mathcal{L}_{N}^{\mathrm{bEX}}=5^{N}\left(\mathcal{L}_{N}^{\mathrm{EX}}+\frac{1}{b^{N}}\mathcal{L}_{N}^{\mathrm{boun}}\right).$$

Symmetric exclusion process with slowed boundary on the Sierpinski gasket Dirichlet $(b < \frac{5}{2})$, Robin $(b = \frac{5}{2})$, Neumann $(b > \frac{5}{2})$

Equilibrium $\Leftrightarrow \lambda_+(a) = \lambda_+$ and $\lambda_-(a) = \lambda_-$ for all $a \in V_0$. (Otherwise, nonequilibrium.)

- (Non)equilibrium density hydrodynamic limit (DRN√) [C.-Gonçalves '19]
- Ornstein-Uhlenbeck limit of equilibrium density fluctuations (DRN√). [C.-Gonçalves '19]
- Large deviations principle for the (non)equilibrium density ($D\sqrt{}$) [C.-Hinz '19]
- Hydrostatic limit, scaling limit of nonequilibrium density fluctuations (D in progress).
 [C.–Franceschini–Gonçalves–Menezes '19+] → careful study of two-particle correlations
- More in the pipeline:

Motion of the tagged particle (a fractional BM on the gasket?).

Add (suitably rescaled) weak asymmetry to the jump rate, prove that the equilibrium density fluctuations converges (subsequentially) to a stochastic Burgers equation [C. '19+]