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Scaling limits of empirical density in the boundary-driven SEP on the Sierpinski gasket

o ERR\EIALISNGH Joint work with Patricia Gongalves (IST Lisboa), arXiv:1904.08789.
® LDP: Joint work with Michael Hinz (Bielefeld) (2019+).

© RIS EYIHl Joint w/ Chiara Franceschini, Patricia Gongalves, and Otdvio Menezes

(all IST Lisboa) (2019+).

Functional inequalities and local averging tools (C.)

o WVl V- S ETilelSWINTIER £CP '17, arXiv:1606.01577.

® Local ergodicity (1-block & 2-blocks estimates): arXiv:1705.10290:
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Motivation Exclusion process on SG
0e000 000000000 000000000
Exclusion process
1 1
2 2
bl 4 ® L, 9% & °
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The (symm.) exclusion process on (G, c) is a Markov chain on {0,1}" with generator

(LXF)0) = Y oy (VaF)(m). £:{0,1}V =R,

xy€E

n(y), ifz=x,

where (Vs )(n) = F(¥) — £(n) and (7%)(z) = { n(x), ifz =y,
n(z), otherwise.

® Each product Bernoulli measure v, « € [0,1], with marginal vo{n : n(x) = 1} = a for

each x € V, is an invariant measure.

® Dirichlet energy: EEX(f) = % Z Caw /{0 v (Vi F)()]? dva(n).
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A (1) L3 m AL (N=1)
A (1) /\}Ig—tl)l
Designate a finite boundary set 9V C V. For each a € 9V
® At rate A\(a), n(a) = 0 — n(a) =1 (birth).
Formally,

® At rate A_(a), n(a) =1 — n(a) = 0 (death).

acoVv

(39 () = D P(a)(1 = n(a) + A= (a)n(alF(n°) = f(m)], £ :{0,1}" — R, where

(2) = { 1—n(a),

if z=a,
n(z), otherwise.
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Adding reservoirs (Glauber dynamics) to the exclusion process

o, o o~ G

A_(1) A_(N=1)

® 1D boundary-driven simple exclusion process: generator N2 (E]E:1X2 N—1} + £l{)f,u/\?—1}>'

® Has been studied extensively for the past ~ 15 years:
Hydrodynamic limits, fluctuations, large deviations, etc.
Bertini-DeSole—Gabrielli-Landim—Jona-Lasinio '03, '07; Landim—Milanes—Olla '08;
Franco—Gongalves—Neumann 13, '17; Baldasso—-Menezes—Neumann—Souza '17;
Gongalves—Jara—Menezes—Neumann '18+; ...

® Difficulties: # of particles is no longer conserved; the invariant measure is in general not
explicit.
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Euclidean torus (Z/NZ)%: Too many results, cf. Kipnis-Landim 99

s; tri °
exclé'i';‘:::cess Crystal lattices: Tanaka 12
i i i van Ginkel-Redig '18 (1o tr ional invariance)
| )3 |
T E k f dspec
1 2 3

dspec > 2: CURSE OF DIMENSIONALITY!!

Zor (Z/NZ)
Energy methods/PDE v
Algebraic duality v/

Integrable probability v* Resistance spaces

(w/o translational invariance)
[incl: Z with long jumps,

Z with a slow bond or site,
fractals, trees, random graphs, ...]
Energy methods/PDE v
Algebraic duality (some v, some ?)
Integrable probability 7?7

Boundary-driven

(weakly) asymmetric LOTS OF TOOLS
exclusion process

® Today's message: On state spaces with spectral dimension d.,,.. € [1.2) (diffusion is strongly
recurrent), we have a path towards proving scaling limits of SSEP/WASEP w/o requiring translational
invariance.

® Open question: Prove scaling limits of boundary-driven SSEP/WASEP on state spaces with
dspec > 2 (diffusion is NOT strongly recurrent).
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Let K be a nonempty set. A resistance form (£, F) on K is a pair such that

F is a vector space of R-valued functions on K containing the constants, and £ is a nonnegative
definite symmetric quadratic form on F satisfying

E(u,u) =0 < uis constant.
B F/{constants} is a Hilbert space with norm &(u, u)*/2.

Given a finite subset V C K and a function v : V — R, there is u € F s.t. uly = v.
For x,y € K, the effective resistance

Rete(x,y) := sup{% cu€eF, E(u,u) > O} < 00.

(Markovian property) If u € F, then G:=0V (uA 1) € F and E(a, 0) < E(u, u).

v
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Point-to-point effective resistance is finite

[u() — )P o -
2o : 6.7-‘,5(,)>0}< .

Rett(x, y) := sup {

Examples of resistance spaces

® Classical Dirichlet form f;, [V ul? dx on L2(R, dx) is a resistance form <> Q has Euc dim 1.

® «-stable process on R with o € (1, 2]:

a [u(x) — u()P?
&l )(u) = /1112 =" dydx.

IX_y|1+a

® Diffusion on (some) fractals, trees, random graphs:

AL
HHEHHHEHHHT
88| -L:.-L .-L:.-L .-L:
m IBEESs ISESaa inen
HHHHHHHHT
s iy
Hot HiLE
juey m B ..L:
m m o oo
o HH T
THTT THTTH m i
RSNttt Mt iteite - :
IS8 -1—:»1— -L-:-L- -L:
ju el inEEes| InEens! ison
HHHAHEHHE
Sierpinski gasket Sierpinski carpet Vicsek tree Random dendrite [by David Croydon]
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Boundary-driven exclusion process on the Sierpinski gasket

Qo

ay a2

® Construction of Brownian motion with invariant measure m (the standard self-similar measure) as
scaling limit of RWs accelerated by Ty = 5V.
[Goldstein '87, Kusuoka '88, Barlow-Perkins '88]

® A robust notion of calculus on SG which in some sense mimics (but in many other senses differs
from) calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.
[Kigami, Analysis on Fractals '01; Strichartz, Differential Equations on Fractals '06]

® A good model for rigorously studying (non)equilibrium stochastic dynamics with > 3 boundary
reservoirs.
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Analysis on fractals (a la Kigami-Strichartz)

A &

ay a2

® Define the discrete renormalized Dirichlet energy on Gy:
En(f) = ST - FOP, fiK =R

x,yEVy
Xy

3"’2

Fact. {En(f)}n is monotone nondecreasing, so it either converges to a finite quantity or diverges to
—+o00.
Define F := {f : limy_ o0 En(f) < 400}, and for each f € F, we denote the limit energy by E(f).

® Analogy to the 1D interval:

<./[o.1] A2 dx, H1([0,1])> vs. <f,‘(f):./K . f>

Sobolev embedding: Hi([0, 1]) C C([0,1]), F C C(K).
® Caveat. The “|Vf|?" does NOT exist literally.
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Analysis on fractals (a la Kigami-Strichartz)

AN

ay a2

® Define the discrete renormalized Dirichlet energy on Gy = (V, En):

En(f) === > IF)—fP, f:K—R

Fact. {En(f)}n is monotone nondecreasing, so it either converges to a finite quantity or diverges to
—+o00.
Define F := {f : limy_ o0 En(f) < +00}, and for each f € F, we denote the limit energy by E(f).

® Analogy to the 1D interval:

Sobolev embedding: Hi([0, 1]) C C([0,1]), F C C(K).

® Caveat. For nonconstant f € F, dI'(f) L dm. This is a source of great technical difficulty in the
analysis of RW/IPS on fractals.
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Analysis on fractals (a la Kigami-Strichartz)

Qo

a a2

® Laplacian: the following two formulations coincide.
® Weak formulation: Say u = —Af € C(K) if E(v,f) = / vu dm for all
K
v E Fo:={p€F:dly =0}

® Pointwise formulation (x € Vy \ Wo): (Af)(x) := Nimoo %5'\’ Z [f(y) — f(x)]-

yeVy
Yoox

Denote by domA the operator domain of the Laplacian.

For each f € domA we can further give:

5N
® (Outward) Normal derivative at the boundary (a € Vo): (87 f)(a) = lim I Z [f(a) — f(¥)]-

N— oo
yEVN
yr~a

® |Integration by parts formula:

E(f,g) = /K(fAf)g dm+ > (8% f)(a)g(a)  (f € domA, g € F)
EISY)
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Reservoir

2
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Reservoir

1 n
(cﬁx + e ) :

into/from the boundary vertices V.

Parameter b > 0 governs the inverse speed at which the reservoir injects/extracts particles
A phase transition in the scaling limit of the particle density with respect to b > 0, reflected
by the different boundary conditions.

Dirichlet (b < g), Robin (b = %), Neumann (b > %)
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Hydrodynamic limit: a LLN result

Assume that sequence of probability measures {un}n>1 on {0, l}v’V is associated to a density profile
o: K—[0,1]:
VF € C(K), Vé§ > 0,

lim pn<{ne{0,1}"W : L Z F(X)U(X)f/‘; F(x)o(x) dm(x)| > &  =0.

N— oo [Vn] vy

Given the process {nﬁv 1t > 0} generated by SNLL,\’/EX, the empirical density measure (and its pairing with
test functions F : K — R):

1
) IVNI > ' ()1 <7T:V(F) =l > W:V(X)F(X))

xEVy x€Vy

Claim. {7"}uy converges in the Skorokhod topology on D([0, T], M, ) to the unique measure 7. with
dm.(x) = p(-, x) dm(x).
Vvt € [0, T], VF € C(K), V6 >0,

n N
lim pyqn. -
N— oo

Sl ()F(x) - /F )o(t, x) dm(x)| > & » =0,

‘VNl x€Vy
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EbEX

<£EX + _Eboun)
As(a) = A(a) +A-(a)
(a) = )\+(a)
)/M(az)

Reservoir

Ax(a)
For any t € [0, T], any continuous F : K — R and any § > 0,
li N
wm BN {1?. |V |

S nM)F(x) — / F)p(t, x) dm(x)| > 6
xEVN

, =
K }
where p is the unique weak solution of the heat equation

with Dirichlet boundary condition if b <

dep(t, x) = 58p(t, x),
P(t7 3) = ﬁ(a)v
p(0,x) = o(x),

te[0,T], x€ K\ Vo,

te€(0,T], a€ VW,
x € K.

«O>» «Fr «=»r <

3

DA



000080000

000000000

bEX EX boun
s s (e k)
Az(a) = Ar(a) + A-(a)

(a) = )\+(a)

Az (a)
. i
For any t € [0, T], any continuous F : K — R and any § > 0,
li B
s {"' |v |

> M FG) = [ Floe.x) dmi)| > 6
xEVy

where p is the unique weak solution of the heat equation

with Neumann boundary condition if b > %:

dep(t,x) = 30p(t,x), t€0,T], x €K\ W,
(0+p)(t,a) =0, te(0,T], a€ W,
p(0,x) = o(x), x € K.

«O>» «Fr «=»r <
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5N£tA>IEX

5N (z:ﬁx +

)\z (a) =

biNﬁlA)Ioun) .
Ar(a) +A-(a)

o) = 22
)/M(a;)

Reservoir

© ()
For any t € [0, T], any continuous F : K — R and any § > 0,
lim W
o 22 S/

" IervN"t (F() = [ FGop(e,x) dm() >6} -

where p is the unique weak solution of the heat equation

with linear Robin boundary condition if b = 3
te[0,T], xe€ K\ VW,
te(0,T], ac Vo,

5
dep(t, x) = §0p(t, x),
(01 p)(t, a) = —Ax(a)(p(t, a) — 4(a)),
p(0,x) = o(x), x €K
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Analysis of Dynkin's martingale (which has QV tending to 0 as N — o)
t

= e -l - [ (2 ) ) o
t 5N

* /o Val EZVO ["s (@)(0" F)(@) + gy Ax(a)(ng' () =
[Ingredlent #1] Analysis on fractals

A(a))Fs(a)

ds + ON(l).
This part will produce the weak formulation of the heat equation

«O>» «Fr «=»r < >
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Analysis of Dynkin’s martingale (which has QV tending to 0 as N — o)
t

MY (F) = ] (Ft)—wsv(Fo)—/otw ((3A+as) ) ds
N
+/o TVl

> {ns (a) (0" Fo)(a) +
ac\

3NpN
[Ingredient #2] Analysis of the boundary term

v (@) (a) = A(a)Fi(a )} ds + on(1)

® b > 5/3: The first term dominates, should converge to / Z ps(a) (8" Fo)(a) d
= /3 Both terms contribute equally, should converge to

aeVo
/ 25 [0 F)(E) + Ax(@)(os(a) — A(@)Fi(3)] ds
aev0

a
L
® b < 5/3: Impose pt(a) = p(a) for all a € V, should converge to / Z (a)(0~ Fs)(a)
aevo
|
Require a series of replacement lemmas: not trivial on state spaces without translational invariance!
— Octopus inequality, moving particle lemma

4O «F»r « =

3

it
-
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N — oo):

MY (F) —wt(F[)—wé"(Fo)—/ot A <(§A+8> ) ds

N

A P> [ns )0 Fo)(a) + 3,?,bN/\z(a)(niv(a)—ﬁ(a))Fs(a)} ds + on(1).

lN—>oc

t 2
0 = m¢(Fy) — mo(Fo) — / Ts <<§A + 8;) F5> ds + (boundary term)
Jo

Summary
o]

[Ingredient #3] Convergence of stochastic processes
® Show that {7}y is tight in the Skorokhod topology on D([0, T], M) via Aldous’ criterion.

® Prove that any limit point 7. is absolutely continuous w.r.t. the self-similar measure m, with
me(dx) = p(t, x) dm(x), and p € L3(0, T, F).

® Finally, prove ! of the weak solution to the heat equation to conclude ! of the limit point.
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Density fluctuation field: Heuristics

Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € V. (Otherwise, nonequilibrium.)
Equilibrium: the product Bernoulli measure V:)v with p = Ay /(A4 + A_) is stationary for the process.
Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YN (F) =

> () = Byl (01) F(x)

|VN‘ xEVpy

The corresponding Dynkin's martingale is

M(F) =Y{(F) = V'(F) - / V¥ (ANF) ds + on(1)

N
W/ S s { O3 F)(@) + S M (2)F(a)
N

acVp
which has QV

<M”(F>>z:/0 T 2o 2 (0 = ) (FG) — F(y)Pes

xEVy yEVY
yox

1S g e @)+ A @)1l ) e

0 EIS7)
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Density fluctuation field: Heuristics
Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € V4. (Otherwise, nonequilibrium.)

Equilibrium: the product Bernoulli measure V‘/)v with p = Ay /(A4 + A_) is stationary for the process.
Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YN (F) =

> () = By (1) F(x)

The corresponding Dynkin's martingale is

M(F) = Y{(F) = V'(F) - / V¥ (AnF) ds + on(1)

3/\/
+M/ Sl a){aNF)(aH -

acVp

N

“Ar(a)F(a )} ds,
which, as N — oo, has the QV of a space-time white noise (with boundary condition)

t
2/ / X(ps) dTp(F)ds, where x(a) = a(l — ), &p(F)=E(F)+ Z As(a l{b 5/3}
0 K

aeVYy

and ,(F) is the energy measure associated to &,(F): &y(F / dr,(F
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Density fluctuation field: Heuristics

Equilibrium < X\ (a) = Ay and A_(a) = A_ for all a € Vg. (Otherwise, nonequilibrium.)
Equilibrium: the product Bernoulli measure VQ' with p = Ay /(A4 + A_) is stationary for the process.
Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YR = S (nﬁv(x) — By [0 (x)]) F(x)
|VN‘ xEVpy
=7 (x)
The corresponding Dynkin's martingale is
t
MY(F) = YY(F) = (P~ [ 9X(BwF) ds + on()
JO
A [ 3 e |esme + S @) d
— 7. (a) | (6 a ——As(a)F(a s,
VIl o S ! B3N

We then argue that the test function F € domA, be chosen appropriate to each boundary condition such
that the boundary term vanishes as N — oco.

{F € domA : F|y, = 0}, if b<5/3,
domAp :={ {F € domA: (84F)|y, = —AsFly,}, if b=5/3,
{F € domA : (8" F)|y, = 0}, if b>5/3.

For technical reasons we use a smaller test function space Sy, := {F € domA, : AyF € domA,} , which
can be made into a Frechét space. Let Sé be the topological dual of Sp.
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Scaling limit of density fluctuations: Equilibrium

1
SNLIKIEX —gN (Eﬁx + bWERoun) )

Dirichlet (b < %) Robin (b :) Neumann (b > %)
Eq. & Ai(a) = Ay and A_(a) = A_ Va e V.

ol |

Reservoir

Reservoir

Let (Q)'X’b be the probability measure on D([0, T], S;) induced by the DFF WV started from 1/2’ and
boundary parameter b.

Theorem (EqCLT (C.—Gongalves '19))

The sequence {Qg’b},\, converges in distribution, as N — oo, to a unique solution of the
Ornstein-Uhlenbeck equation with covariance

= = 2 S = =
EDUFVL(G)] = x(o) [ (FEF)(TEG)dm+ 2 -2-x(0) [ & (T.,F. T2, 6) ar
for0<s<t<TandF,GecS,.

{'T'f} is the heat semigroup associated to %é”b.
t>0

Summary
o]
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Scaling limit of density fluctuations: Non-equilibrium, Dirichlet case

A m,w(
5N CREX — gN (ﬁll?lx + Lk]oun) ]
Assumptions
1. {un}n is associated to a profile o : K — [0, 1].
2. sup [E, 17" 0T W] S vl

x,y€Vy

A

Reservoir Reservoir

Let Q. be the probability measure on D([0, T], Sp;,) induced by the DFF YN started from pup.

Theorem (NoneqFIuct (C.—Franceschini-Gongalves—Menezes '19+))
Under the above Assumptions, any limit point Q* of {Qy, }n concentrates on paths
Ve(F) = Yo(TP"F) + We(F)  VF € Spir,

where Yy and W; are uncorrelated mean-zero random fields, and W; is Gaussian with variance

2 t s
2. / / X(ps) AT (TP F) ds.
3 o Jk
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Scaling limit of density fluctuations: Non-equilibrium, Dirichlet case

‘‘‘‘ ) N rbEX _ N EX boun
) SNLREX = s (LR 4 ci).
Assumptions

1. {un}n is associated to a profile o : K — [0, 1].

2. sup [Euy [0 W] S IVl 7
x,yEVy

Jos(ea) 3.0 4 Vo Gaussian.

Reservoir Reservoir

Let Qu,, be the probability measure on D([0, T], S};.) induced by the DFF YV started from puy.

Theorem (NoneqCLT (C.—Franceschini-Gongalves—Menezes '19+))

Under the above Assumptions, {Qy, }n converges to a generalized O-U process with
covariance

E[V:(F)Ys(G)] =E [yO(TtDirF)yO(-T—]SDirG)]
+ % '2/05 /K x(pr) dT (TPP,F, T?if,G) dr

for0<s<t<TandF,G e Sp;,.



Motivation: Generalizing the analysis of the exclusion process from 1D to higher dimensions

Boundary-driven exclusion process on the Sierpinski gasket

New tools & ideas for resistance spaces

DA



Motivation Exclusion process on SG: Main results New tools & ideas for resistance spaces Summary
00000 000000000 0@0000000 [©]

New/old tools & ideas

Microscopics: Exclusion process on a non-lattice state space

NO translational invariance.
® How to carry out local averaging without using translation?

Ans: Use the for the random walk process, in conjunction with
space-time scaling limits of random walks to a diffusion process ()

® How to characterize nonequilibrium correlations ¢(x, y) = E[77(x)7j(y)] in the exclusion
process on a general graph?
Ans: ldentify ¢ as the solution to a discretized

Poisson's equation on the product graph Bl BT\l g i [N T ETSET R

Macroscopics: Analysis of (S)PDEs on fractals / metric measure spaces
NO explicit representation formulas, DELICATE notion of gradient V, but EXCELLENT
notion of Laplacian A.

® Dirichlet forms for diffusion £(f, g) = (f, —Ag)m, heat semigroup {T:}+>0

® Heat kernel bounds p:(x,y) (Nash ineq.), spectral asymptotics, Green's function G(x, y).
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A A Y 7A)
AN LD LD LD
LNNANAN FNNANAN

AVAY JAVAN JAVAN
A%xVA A%x%A A%x%A A%x%A A%xVA A%x%A AQXQA A%x#A
For finite A C V/, denote the average density over A by Avy[n] := |A| 7} >.enn(2).
In the proof of the hydrodynamic limit for Markov processes, with generator TNLE on a sequence of
graphs Gy = (Wi, En), we use that for every t > 0:

e e t N N
i B | [ (00 = Avage.m[201) o

} =0, x€& W.
where
L {n{v :t > 0} is the exclusion process generated by Ty Ly, where Ty is the diffusive time
acceleration factor.
® .y can be any measure on {0,1}N.

® B(x,r)isa “ball" of radius r centered at x (in the graph metric).

v
[y
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Hierarchy of stochastic processes on a fixed graph

Interchange process f : {Permutations on V} — R

(N = [ 5 3 calf(r™) — F)I dva).

zweE

T PROJECTION |

Exclusion process f:{0,1}V — R

(N = [ 53 calfr™) — F)F dva(n).

zweE

T PROJECTION |

Random walk process f:V — R

EW(F) = > calf(z) — F(w).

w€eE
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Hierarchy of stochastic processes on a fixed graph

Interchange process f : {Permutations on V} — R

1 X
5 [ TFGr) = ) du) < Reas(x, )€™ (1),
Mbving particle lemma [C. ECP 2017]

T PROJECTION |

Exclusion process f:{0,1}V — R

l X

5 [ ) = F@F dvan) < Rssl E™ ()
Moving particle lemma [C. ECP 2017]

T PROJECTION |

Random walk process f:V — R

[F(x) = F(V)I® < Rese(x, )€™ ().
Dirichlet principle [1867]
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Octopus inequality & Aldous’ spectral gap conjecture

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo-Liggett—Richthammer JAMS 10 proved for the interchange process:

Theorem (Octopus inequality, IP (Caputo-Liggett-Richthammer JAMS '10))
For all f : S‘V‘ — ]R,

[ ettt = vt > [ 3 aalrr) - £ dv().

Y€ Vx yz€Ex

Energy lost from removed edges > Energy gained from increased conductances

This was the key inequality which resolved Aldous’ '92 spectral gap conjecture:

Summary
o]

{ Projection argument gives A3 (G) < AF¥(G) < AJF(G) } — MP(6) = ABX(6) = ARV (6)
2 =X =X

(0 = AF(6) > AW (6)
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (c. Ecp '17))

3 [ 1) = (P dvn) < R (e NEF D, F:81 B,

3 [ 1) = P dva() < Res(o )P0, F: (0,1} > R

Proof.
® (Ol) < monotonicity of energy under 1-point network reductions. So reduce G successively until two
vertices x, y are left, we get MPL for IP.

® A further projection argument yields the MPL for EX.
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (c. Ecp 17))

3 [ 1) = (@R dvn) < R (e NEF D, £:81 R,

3 [ 10 = )P dvaln) < Rl NEP(D, £ {0,1)Y SR,

Conventional approach is to pick a shorest path connecting x and y, and telescope along the path to obtain
the energy cost. [Guo—Papanicolaou-Varadhan '88, Diaconis—Saloff-Coste '93].

OK on finite integer lattices, but does NOT always give optimal cost on general weighted graphs.
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (c. Ecp'17))

> [ 16r) = @ duln) < Rl NET (), £ Sy R,

3 [ 1) = P dvan) < Rl )EBX(1), 1 (0,13 R

MPL bounds the energy cost by “optimizing electric flow over all paths connecting x and y.”

Summary
o]
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MPL & local averaging

AVXVA AVXVA AVXVA AVMVA

For finite A C V/, denote the average density over A by Avp[n] := |A| 7" > ean(2)-
In the proof of the hydrodynamic limit for Markov processes, with generator 'TNEEX on a sequence of

graphs Gy = (Vi, En), we use that for every t > 0:
Replacement lemma

_— trN N
L'fz‘a Jim By H/O (775 (x) = Avp(x,enyns ]) ds

}:0, x € Wy.

n(x) — Avg[n] =

1
D (n(x) = n(2))-
18]
zEB
Estimating this cost using the variational characterization of the largest eigenvalue requires telescoping or
MPL. Works for resistance spaces; UNCLEAR if there is an analog of this for dspec > 2.
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Two-point correlation functions, nonequilibrium

N e invar N AbEX
L] . p—
[lgs: unique invariant measure for 5% L=, b = 1. PP

® Steady-state density: p".(x) = E, v [n(x)].

® Steady-state correlation: ¢%(x,y) = E,,n [(1(x) = pL(x))(n(y) = pL(»)]-
Related to the local time for two particles in EX to stay adjacent to each other.

® In 1D, ¢ (x, y) is exactly a multiple of the Green’s function for RW, — x5 GV (x, y).

® How to find qbévs(x,y) on SG? Or on a general graph?

Poisson’s eqn on the product graph

BNGLL (%, y) = 1y 5" (pévs(X) + ol (y) — 200 (x)Pl(y) — 2¢>2’s(x,y)) , Xy €W\ Vo, x#v,

Anol(x,x)=2-5"3" (¢2’s(x,y) =% (pii(x))) : x € Wy \ Vo,
yr~x
(@ 2)x.)) (@) = (@03 1)1 %)) (2) = =y Ax(a)oll (x, a), ac Vo

Source term is nonzero only if x and y are adjacent.
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Two-point correlation functions, nonequilibrium

L /LQ/SZ unique invariant measure for 5N,Ck,EX, b=1. e o
® Steady-state density: p (x) = LY [n(x)].
® Steady-state correlation: ¢/ (x,y) = E ull [(n(x) = P (<N (nly) — P ()]

Related to the local time for two partlcles in EX to stay adjacent to each other.

® In 1D, qbgs(x,y) is exactly a multiple of the Green’s function for RW, —ﬁGN(x,y).

® How to find ¢N (x,y) on SG? Or on a general graph?

“Invert the Laplacian” to solve for the correlation (in terms of the Green's function G")

lon) =~ 3 3 600Gy A ) )
x! €V y! ~ox!
+|V—1N‘G'v(x,y) (x(p.i"s(x)Hx(pL“S(y))) IV 78 37 Ae(a)G" (x, 2)G" (v, a)x(pli(a))

EIS)

E 2 2 ¢l o) [6"6ax) = 6"0ey)] [6"1r,x) = 61y

x'eVy v/ ~x!
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Two-point correlation functions, nonequilibrium

o 4N unique invariant measure for 5N LEEX, b = 1.
® Steady-state density: p (x) = E, v [n(x)].
® Steady-state correlation: ¢Q’S(x, y) = ]ENLVS [(n(x) — pQ’S(X))(n(y) — pivs(y))]

Related to the local time for two particles in EX to stay adjacent to each other.

® |n 1D, ¢Q/S(><,y) is exactly a multiple of the Green's function for RW, —ﬁGN(x,y).
® How to find ¢ (x,y) on SG? Or on a general graph?
After some estimates we get

Lemma
There exists a positive constant C = C(pss) such that for all N and x,y € Vy,

C
[62(x, ¥)| < ——max { G"(x,y), sup G"(x, x)G" (v, y")
[Vl (! ") EVR ! oy

Correlation scales as (inverse volume) X (Green’s function for RW).
This Lemma (and its time-dependent version) is needed to establish tightness/convergence of the density
fluctuation field in non-equilibrium.



Motivation Exclusion process on SG: Main results New tools & ideas for resistance spaces Summary
00000 000000000 000000000 (]

Summary, and Thank you!

Reservoir

1 un
sNLRPX =5 (LEX + o En ) :

Symmetric exclusion process with slowed boundary on the
Sierpinski gasket
Dirichlet (b < ), Robin (b = %), Neumann (b > 3)

A (ru)( ),\ (a1) A (’«u]( )/\ (az)

Equilibrium < X\, (a) = Ay and A_(a) = A_ for all a € V. (Otherwise, nonequilibrium.)

® (Non)equilibrium density hydrodynamic limit (DRNv") [C.—Gongalves '19]
® Ornstein-Uhlenbeck limit of equilibrium density fluctuations (DRNv”). [C.-Gongalves '19]
® Large deviations principle for the (non)equilibrium density (Dv") [C.—Hinz '19+]

® Hydrostatic limit, scaling limit of nonequilibrium density fluctuations (Dv'RN?).
[C.—Franceschini-Gongalves—Menezes '19-+]

Future directions

® Generalization to any resistance space (with a good theory of boundary-value problems).

® Incorporate asymmetry in the exclusion jump rates — microscopic derivation of stochastic Burgers’
equation on resistance spaces.
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