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Overview of results
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Scaling limits of empirical density in the boundary-driven SEP on the Sierpinski gasket

• LLN & eqFluct: Joint work with Patŕıcia Gonçalves (IST Lisboa), arXiv:1904.08789.

• LDP: Joint work with Michael Hinz (Bielefeld) (2019+).

• NoneqFluct & hydrostatics: Joint w/ Chiara Franceschini, Patŕıcia Gonçalves, and Otávio Menezes

(all IST Lisboa) (2019+).

Functional inequalities and local averging tools (C.)

• Moving particle lemma: ECP ’17, arXiv:1606.01577.

• Local ergodicity (1-block & 2-blocks estimates): arXiv:1705.10290.
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Outline

Motivation: Generalizing the analysis of the exclusion process from 1D to higher dimensions

Boundary-driven exclusion process on the Sierpinski gasket

New tools & ideas for resistance spaces
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Exclusion process

1
2
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The (symm.) exclusion process on (G , c) is a Markov chain on {0, 1}V with generator

(LEXf )(η) =
∑
xy∈E

cxy (∇xy f )(η). f : {0, 1}V → R,

where (∇xy f )(η) := f (ηxy )− f (η) and (ηxy )(z) =

 η(y), if z = x ,
η(x), if z = y ,
η(z), otherwise.

• Each product Bernoulli measure να, α ∈ [0, 1], with marginal να{η : η(x) = 1} = α for
each x ∈ V , is an invariant measure.

• Dirichlet energy: EEX(f ) =
1

2

∑
zw∈E

czw

∫
{0,1}V

[(∇xy f )(η)]2 dνα(η).
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Adding reservoirs (Glauber dynamics) to the exclusion process
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Designate a finite boundary set ∂V ⊂ V . For each a ∈ ∂V :

• At rate λ+(a), η(a) = 0→ η(a) = 1 (birth).

• At rate λ−(a), η(a) = 1→ η(a) = 0 (death).

Formally,

(Lboun
∂V f )(η) =

∑
a∈∂V

[λ+(a)(1− η(a)) + λ−(a)η(a)][f (ηa)− f (η)], f : {0, 1}V → R, where

ηa(z) =

{
1− η(a), if z = a,
η(z), otherwise.



Motivation Exclusion process on SG : Main results New tools & ideas for resistance spaces Summary

Adding reservoirs (Glauber dynamics) to the exclusion process
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• 1D boundary-driven simple exclusion process: generator N2
(
LEX
{1,2,··· ,N−1} + Lboun

{1,N−1}

)
.

• Has been studied extensively for the past ∼ 15 years:
Hydrodynamic limits, fluctuations, large deviations, etc.
Bertini–DeSole–Gabrielli–Landim–Jona-Lasinio ’03, ’07; Landim–Milanes–Olla ’08;

Franco–Gonçalves–Neumann ’13, ’17; Baldasso–Menezes–Neumann–Souza ’17;

Gonçalves–Jara–Menezes–Neumann ’18+; ...

• Difficulties: # of particles is no longer conserved; the invariant measure is in general not
explicit.
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Extending the analysis to higher dims & with > 2 reservoirs?

dspec
0 1 2 3

Symmetric
exclusion process

Boundary-driven
(weakly) asymmetric
exclusion process

Z or (Z/NZ)
Energy methods/PDE X
Algebraic duality X
Integrable probability X
...
LOTS OF TOOLS

Resistance spaces
(w/o translational invariance)
[incl.: Z with long jumps,
Z with a slow bond or site,
fractals, trees, random graphs, ...]
Energy methods/PDE X
Algebraic duality (some X, some ?)
Integrable probability ???

dspec ≥ 2: CURSE OF DIMENSIONALITY!!

Euclidean torus (Z/NZ)d: Too many results, cf. Kipnis-Landim ’99
Crystal lattices: Tanaka ’12
Riemannian manifolds: van Ginkel-Redig ’18 (no translational invariance)

• Today’s message: On state spaces with spectral dimension dspec ∈ [1, 2) (diffusion is strongly
recurrent), we have a path towards proving scaling limits of SSEP/WASEP w/o requiring translational
invariance.

• Open question: Prove scaling limits of boundary-driven SSEP/WASEP on state spaces with
dspec ≥ 2 (diffusion is NOT strongly recurrent).
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Resistance spaces [Kigami ’03]

Let K be a nonempty set. A resistance form (E,F) on K is a pair such that

1 F is a vector space of R-valued functions on K containing the constants, and E is a nonnegative
definite symmetric quadratic form on F satisfying

E(u, u) = 0 ⇔ u is constant.

2 F/{constants} is a Hilbert space with norm E(u, u)1/2.

3 Given a finite subset V ⊂ K and a function v : V → R, there is u ∈ F s.t. u|V = v .

4 For x, y ∈ K , the effective resistance

Reff (x, y) := sup

{
[u(x)− u(y)]2

E(u, u)
: u ∈ F, E(u, u) > 0

}
<∞.

5 (Markovian property) If u ∈ F , then ū := 0 ∨ (u ∧ 1) ∈ F and E(ū, ū) ≤ E(u, u).
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Resistance spaces [Kigami ’03]

Point-to-point effective resistance is finite

Reff (x, y) := sup

{
[u(x)− u(y)]2

E(u, u)
: u ∈ F, E(u, u) > 0

}
<∞.

Examples of resistance spaces

• Classical Dirichlet form
∫

Ω
|∇u|2 dx on L2(Ω, dx) is a resistance form ⇔ Ω has Euc dim 1.

• α-stable process on R with α ∈ (1, 2]:

E(α)(u) =

∫
R2

[u(x)− u(y)]2

|x − y |1+α
dy dx.

• Diffusion on (some) fractals, trees, random graphs:

Reservoir

Reservoir

Reservoir

Sierpinski gasket Sierpinski carpet Vicsek tree Random dendrite [by David Croydon]
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Boundary-driven exclusion process on the Sierpinski gasket

a0

a1 a2

• Construction of Brownian motion with invariant measure m (the standard self-similar measure) as

scaling limit of RWs accelerated by TN = 5N .

[Goldstein ’87, Kusuoka ’88, Barlow-Perkins ’88]

• A robust notion of calculus on SG which in some sense mimics (but in many other senses differs
from) calculus in 1D: Laplacian, Dirichlet form, integration by parts, boundary-value problems, etc.

[Kigami, Analysis on Fractals ’01; Strichartz, Differential Equations on Fractals ’06]

• A good model for rigorously studying (non)equilibrium stochastic dynamics with ≥ 3 boundary
reservoirs.
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Analysis on fractals (à la Kigami–Strichartz)

a0

a1 a2

• Define the discrete renormalized Dirichlet energy on GN :

EN (f ) =
5N

3N

1

2

∑
x,y∈VN
x∼y

[f (x)− f (y)]2
, f : K → R.

Fact. {EN (f )}N is monotone nondecreasing, so it either converges to a finite quantity or diverges to
+∞.

Define F := {f : limN→∞ EN (f ) < +∞}, and for each f ∈ F , we denote the limit energy by E(f ).

• Analogy to the 1D interval:(∫
[0,1]

|∇f |2 dx, H1([0, 1])

)
vs.

(
E(f ) =

∫
K

“|∇f |2” dm, F
)

Sobolev embedding: H1([0, 1]) ⊂ C([0, 1]), F ⊂ C(K).

• Caveat. The “|∇f |2” does NOT exist literally.
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Analysis on fractals (à la Kigami–Strichartz)

a0

a1 a2

• Define the discrete renormalized Dirichlet energy on GN = (VN , EN ):

EN (f ) =
5N

3N

1

2

∑
x,y∈VN
x∼y

[f (x)− f (y)]2
, f : K → R.

Fact. {EN (f )}N is monotone nondecreasing, so it either converges to a finite quantity or diverges to
+∞.

Define F := {f : limN→∞ EN (f ) < +∞}, and for each f ∈ F , we denote the limit energy by E(f ).

• Analogy to the 1D interval:(∫
[0,1]

|∇f |2 dx, H1([0, 1])

)
vs.

(
E(f ) =

∫
K

dΓ(f ), F
)

Sobolev embedding: H1([0, 1]) ⊂ C([0, 1]), F ⊂ C(K).

• Caveat. For nonconstant f ∈ F , dΓ(f ) ⊥ dm. This is a source of great technical difficulty in the
analysis of RW/IPS on fractals.
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Analysis on fractals (à la Kigami–Strichartz)

a0

a1 a2

• Laplacian: the following two formulations coincide.

• Weak formulation: Say u = −∆f ∈ C(K) if E(v , f ) =

∫
K

vu dm for all

v ∈ F0 := {φ ∈ F : φ|V0
= 0}.

• Pointwise formulation (x ∈ VN \ V0): (∆f )(x) := lim
N→∞

3

2
5N
∑
y∈VN
y∼x

[f (y)− f (x)].

Denote by dom∆ the operator domain of the Laplacian.

For each f ∈ dom∆ we can further give:

• (Outward) Normal derivative at the boundary (a ∈ V0): (∂⊥f )(a) = lim
N→∞

5N

3N

∑
y∈VN
y∼a

[f (a)− f (y)].

• Integration by parts formula:

E(f , g) =

∫
K

(−∆f )g dm +
∑
a∈V0

(∂⊥f )(a)g(a) (f ∈ dom∆, g ∈ F)



Motivation Exclusion process on SG : Main results New tools & ideas for resistance spaces Summary

Exclusion process on the Sierpinski gasket with slowed boundary

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Parameter b > 0 governs the inverse speed at which the reservoir injects/extracts particles
into/from the boundary vertices V0.

Main result in a nutshell
A phase transition in the scaling limit of the particle density with respect to b > 0, reflected
by the different boundary conditions.

Dirichlet (b < 5
3

), Robin (b = 5
3

), Neumann (b > 5
3

)
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Hydrodynamic limit: a LLN result

Assume that sequence of probability measures {µN}N≥1 on {0, 1}VN is associated to a density profile
% : K → [0, 1]:
∀F ∈ C(K), ∀δ > 0,

lim
N→∞

µN

η ∈ {0, 1}VN :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

F (x)η(x)−
∫
K

F (x)%(x) dm(x)

∣∣∣∣∣∣ > δ

 = 0.

Given the process {ηNt : t ≥ 0} generated by 5NLbEX
N , the empirical density measure (and its pairing with

test functions F : K → R):

π
N
t =

1

|VN |
∑
x∈VN

η
N
t (x)1{x}

πN
t (F ) =

1

|VN |
∑
x∈VN

η
N
t (x)F (x).



Claim. {πN
· }N converges in the Skorokhod topology on D([0,T ],M+) to the unique measure π· with

dπ·(x) = ρ(·, x) dm(x).
∀t ∈ [0,T ], ∀F ∈ C(K), ∀δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

η
N
t (x)F (x)−

∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX

N +
1

bN
Lboun

N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit (C.–Gonçalves ’19))

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

η
N
t (x)F (x)−

∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with Dirichlet boundary condition if b < 5

3 : ∂tρ(t, x) = 2
3 ∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

ρ(t, a) = ρ̄(a), t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX

N +
1

bN
Lboun

N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit (C.–Gonçalves ’19))

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

η
N
t (x)F (x)−

∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with Neumann boundary condition if b > 5

3 : ∂tρ(t, x) = 2
3 ∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

(∂⊥ρ)(t, a) = 0, t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Hydrodynamic limit: a LLN result

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX

N +
1

bN
Lboun

N

)
.

λΣ(a) = λ+(a) + λ−(a)

ρ̄(a) =
λ+(a)

λΣ(a)

Theorem (Density hydrodynamic limit (C.–Gonçalves ’19))

For any t ∈ [0,T ], any continuous F : K → R and any δ > 0,

lim
N→∞

µN

ηN· :

∣∣∣∣∣∣ 1

|VN |
∑
x∈VN

η
N
t (x)F (x)−

∫
K

F (x)ρ(t, x) dm(x)

∣∣∣∣∣∣ > δ

 = 0,

where ρ is the unique weak solution of the heat equation
with linear Robin boundary condition if b = 5

3 : ∂tρ(t, x) = 2
3 ∆ρ(t, x), t ∈ [0,T ], x ∈ K \ V0,

(∂⊥ρ)(t, a) = −λΣ(a)(ρ(t, a)− ρ̄(a)), t ∈ (0,T ], a ∈ V0,
ρ(0, x) = %(x), x ∈ K .
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

[Ingredient #1] Analysis on fractals
This part will produce the weak formulation of the heat equation.



Motivation Exclusion process on SG : Main results New tools & ideas for resistance spaces Summary

Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

[Ingredient #2] Analysis of the boundary term

• b > 5/3: The first term dominates, should converge to

∫ t

0

2

3

∑
a∈V0

ρs (a)(∂⊥Fs )(a) ds

• b = 5/3: Both terms contribute equally, should converge to∫ t

0

2

3

∑
a∈V0

[
ρs (a)(∂⊥Fs )(a) + λΣ(a)(ρs (a)− ρ̄(a))Fs (a)

]
ds

• b < 5/3: Impose ρt(a) = ρ̄(a) for all a ∈ V0, should converge to

∫ t

0

2

3

∑
a∈V0

ρ̄(a)(∂⊥Fs )(a)

Require a series of replacement lemmas: not trivial on state spaces without translational invariance!
→Octopus inequality, moving particle lemma
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Heuristics for hydrodynamics

Analysis of Dynkin’s martingale (which has QV tending to 0 as N →∞):

MN
t (F ) := π

N
t (Ft)− πN

0 (F0)−
∫ t

0

π
N
s

((
2

3
∆ + ∂s

)
Fs

)
ds

+

∫ t

0

3N

|VN |
∑
a∈V0

[
η
N
s (a)(∂⊥Fs )(a) +

5N

3NbN
λΣ(a)(ηNs (a)− ρ̄(a))Fs (a)

]
ds + oN (1).

yN →∞
0 = πt(Ft)− π0(F0)−

∫ t

0

πs

((
2

3
∆ + ∂s

)
Fs

)
ds + (boundary term)

[Ingredient #3] Convergence of stochastic processes

• Show that {πN
· }N is tight in the Skorokhod topology on D([0,T ],M+) via Aldous’ criterion.

• Prove that any limit point π· is absolutely continuous w.r.t. the self-similar measure m, with
πt(dx) = ρ(t, x) dm(x), and ρ ∈ L2(0,T ,F).

• Finally, prove ! of the weak solution to the heat equation to conclude ! of the limit point.
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Density fluctuation field: Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

Equilibrium: the product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− EµN [ηNt (x)]

)
︸ ︷︷ ︸

=:η̄Nt (x)

F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣ(a)F (a)

]
ds,

which has QV

〈MN (F )〉t =

∫ t

0

5N

|VN |2
∑
x∈VN

∑
y∈VN
y∼x

(ηNs (x)− ηNs (y))2(F (x)− F (y))2ds

+

∫ t

0

∑
a∈V0

5N

bN |VN |2
{λ−(a)ηNs (a) + λ+(a)(1− ηNs (a))}F 2(a)ds.
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Density fluctuation field: Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

Equilibrium: the product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− EµN [ηNt (x)]

)
︸ ︷︷ ︸

=:η̄Nt (x)

F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣ(a)F (a)

]
ds,

which, as N →∞, has the QV of a space-time white noise (with boundary condition)

2

3
· 2
∫ t

0

∫
K

χ(ρs ) dΓb(F ) ds, where χ(α) = α(1− α), Eb(F ) = E(F ) +
∑
a∈V0

λΣ(a)F 2(a)1{b=5/3},

and Γb(F ) is the energy measure associated to Eb(F ): Eb(F ) =

∫
K

dΓb(F ).
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Density fluctuation field: Heuristics

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

Equilibrium: the product Bernoulli measure νN
ρ with ρ = λ+/(λ+ + λ−) is stationary for the process.

Not true in the non-equilibrium setting.

Density fluctuation field (DFF) YN
t (F ) =

1√
|VN |

∑
x∈VN

(
η
N
t (x)− EµN [ηNt (x)]

)
︸ ︷︷ ︸

=:η̄Nt (x)

F (x)

The corresponding Dynkin’s martingale is

MN
t (F ) = YN

t (F )− YN
0 (F )−

∫ t

0

YN
s (∆NF ) ds + oN (1)

+
3N√
|VN |

∫ t

0

∑
a∈V0

η̄
N
s (a)

[
(∂⊥N F )(a) +

5N

bN3N
λΣ(a)F (a)

]
ds,

We then argue that the test function F ∈ dom∆b be chosen appropriate to each boundary condition such
that the boundary term vanishes as N →∞.

dom∆b :=


{F ∈ dom∆ : F |V0

= 0}, if b < 5/3,

{F ∈ dom∆ : (∂⊥F )|V0
= −λΣF |V0

}, if b = 5/3,

{F ∈ dom∆ : (∂⊥F )|V0
= 0}, if b > 5/3.

For technical reasons we use a smaller test function space Sb := {F ∈ dom∆b : ∆bF ∈ dom∆b} , which
can be made into a Frechét space. Let S′b be the topological dual of Sb .



Motivation Exclusion process on SG : Main results New tools & ideas for resistance spaces Summary

Scaling limit of density fluctuations: Equilibrium

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Dirichlet (b < 5
3 ), Robin (b = 5

3 ), Neumann (b > 5
3 )

Eq. ⇔ λ+(a) = λ+ and λ−(a) = λ− ∀a ∈ V0.

Let QN,b
ρ be the probability measure on D([0,T ],S′b) induced by the DFF YN

· started from νN
ρ and

boundary parameter b.

Theorem (EqCLT (C.–Gonçalves ’19))

The sequence {QN,b
ρ }N converges in distribution, as N →∞, to a unique solution of the

Ornstein-Uhlenbeck equation with covariance

E[Yt(F )Ys(G)] = χ(ρ)

∫
K

(T̃b
t F )(T̃b

sG) dm +
2

3
· 2 · χ(ρ)

∫ s

0
Eb

(
T̃b
t−rF , T̃

b
s−rG

)
dr

for 0 ≤ s ≤ t ≤ T and F ,G ∈ Sb.{
T̃b

t

}
t>0

is the heat semigroup associated to 2
3 Eb .
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Scaling limit of density fluctuations: Non-equilibrium, Dirichlet case

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N + Lboun

N

)
.

Assumptions

1. {µN}N is associated to a profile % : K → [0, 1].

2. sup
x,y∈VN

∣∣∣EµN [η̄N (x)η̄N (y)]
∣∣∣ . |VN |−1.

Let QµN be the probability measure on D([0,T ],S′Dir) induced by the DFF YN
· started from µN .

Theorem (NoneqFluct (C.–Franceschini–Gonçalves–Menezes ’19+))

Under the above Assumptions, any limit point Q∗ of {QµN }N concentrates on paths

Yt(F ) = Y0(T̃Dir
t F ) +Wt(F ) ∀F ∈ SDir,

where Y0 and Wt are uncorrelated mean-zero random fields, and Wt is Gaussian with variance
2

3
· 2
∫ t

0

∫
K
χ(ρs) dΓ(T̃Dir

t−sF ) ds.
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Scaling limit of density fluctuations: Non-equilibrium, Dirichlet case

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N + Lboun

N

)
.

Assumptions

1. {µN}N is associated to a profile % : K → [0, 1].

2. sup
x,y∈VN

∣∣∣EµN [η̄N (x)η̄N (y)]
∣∣∣ . |VN |−1.

3. YN
0

d→ Y0 Gaussian.

Let QµN be the probability measure on D([0,T ],S′Dir) induced by the DFF YN
· started from µN .

Theorem (NoneqCLT (C.–Franceschini–Gonçalves–Menezes ’19+))

Under the above Assumptions, {QµN }N converges to a generalized O-U process with
covariance

E[Yt(F )Ys(G)] = E
[
Y0(T̃Dir

t F )Y0(T̃Dir
s G)

]
+

2

3
· 2
∫ s

0

∫
K
χ(ρr ) dΓ

(
T̃Dir
t−rF , T̃

Dir
s−rG

)
dr

for 0 ≤ s ≤ t ≤ T and F ,G ∈ SDir.
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Outline

Motivation: Generalizing the analysis of the exclusion process from 1D to higher dimensions

Boundary-driven exclusion process on the Sierpinski gasket

New tools & ideas for resistance spaces
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New/old tools & ideas

Microscopics: Exclusion process on a non-lattice state space

NO translational invariance.

• How to carry out local averaging without using translation?

Ans: Use the effective resistance for the random walk process, in conjunction with

space-time scaling limits of random walks to a diffusion process ( invariance principle ).

• How to characterize nonequilibrium correlations φ(x , y) = E[η̄(x)η̄(y)] in the exclusion
process on a general graph?
Ans: Identify φ as the solution to a discretized

Poisson’s equation on the product graph , and “invert the Laplacian.”

Macroscopics: Analysis of (S)PDEs on fractals / metric measure spaces

NO explicit representation formulas, DELICATE notion of gradient ∇, but EXCELLENT
notion of Laplacian ∆.

• Dirichlet forms for diffusion E(f , g) = 〈f ,−∆g〉m, heat semigroup {Tt}t>0

• Heat kernel bounds pt(x , y) (Nash ineq.), spectral asymptotics, Green’s function G(x , y).
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Local averaging

x

x

For finite Λ ⊂ V , denote the average density over Λ by AvΛ[η] := |Λ|−1∑
z∈Λ η(z).

In the proof of the hydrodynamic limit for Markov processes, with generator TNLEX
N on a sequence of

graphs GN = (VN , EN ), we use that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN
[∣∣∣∣∫ t

0

(
η
N
s (x)− AvB(x,εN)[ηNs ]

)
ds

∣∣∣∣] = 0, x ∈ VN .

where

• {ηNt : t ≥ 0} is the exclusion process generated by TNLEX
N , where TN is the diffusive time

acceleration factor.

• µN can be any measure on {0, 1}VN .

• B(x, r) is a “ball” of radius r centered at x (in the graph metric).
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Hierarchy of stochastic processes on a fixed graph

1

2

3 4

5 →

1

5

3 4

2

Interchange process f : {Permutations on V} → R
EIP(f ) =

∫
1

2

∑
zw∈E

czw [f (ηzw )− f (η)]2 dν(η).

Reversible measure: uniform measure ν on {Perms on V}.

↓ PROJECTION ↓

→

Exclusion process f : {0, 1}V → R
EEX(f ) =

∫
1

2

∑
zw∈E

czw [f (ηzw )− f (η)]2 dνα(η).

Reversible measure: product Bernoulli measure να, α ∈ [0, 1],
να{η : η(x) = 1} = α for all x ∈ V .

↓ PROJECTION ↓

→ Random walk process f : V → R
ERW(f ) =

∑
zw∈E

czw [f (z)− f (w)]2
.
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Hierarchy of stochastic processes on a fixed graph

1

2

3 4

5 →

1

5

3 4

2
Interchange process f : {Permutations on V} → R
1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff (x, y)EIP(f ).

Moving particle lemma [C. ECP 2017]

↓ PROJECTION ↓

→
Exclusion process f : {0, 1}V → R
1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff (x, y)EEX(f ).

Moving particle lemma [C. ECP 2017]

↓ PROJECTION ↓

→
Random walk process f : V → R
[f (x)− f (y)]2 ≤ Reff (x, y)ERW(f ).
Dirichlet principle [1867]
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Octopus inequality & Aldous’ spectral gap conjecture

→

Using the network reduction idea & delicately carrying out a series of Schur complementations,
Caputo–Liggett–Richthammer JAMS ’10 proved for the interchange process:

Theorem (Octopus inequality, IP (Caputo–Liggett–Richthammer JAMS ’10))

For all f : S|V | → R,∫ ∑
y∈Vx

cxy [f (ηxy )− f (η)]2 dν(η) ≥
∫ ∑

yz∈Ex
c̃yz [f (ηyz )− f (η)]2 dν(η).

Energy lost from removed edges ≥ Energy gained from increased conductances

This was the key inequality which resolved Aldous’ ’92 spectral gap conjecture:{
Projection argument gives λRW

2 (G) ≤ λEX
2 (G) ≤ λIP

2 (G)
(OI) =⇒ λIP

2 (G) ≥ λRW
2 (G)

}
=⇒ λ

IP
2 (G) = λ

EX
2 (G) = λ

RW
2 (G)
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (C. ECP ’17))

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

Proof.

• (OI) ⇔ monotonicity of energy under 1-point network reductions. So reduce G successively until two
vertices x, y are left, we get MPL for IP.

• A further projection argument yields the MPL for EX.
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (C. ECP ’17))

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

1
2

3

4

5 6

7

8

9
1

2

3

4

5 6

7

8

9

Conventional approach is to pick a shorest path connecting x and y , and telescope along the path to obtain
the energy cost. [Guo–Papanicolaou–Varadhan ’88, Diaconis–Saloff-Coste ’93].

OK on finite integer lattices, but does NOT always give optimal cost on general weighted graphs.
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Moving particle lemma for interchange/exclusion

Bounding the energy cost of swapping two particles at x and y in an interacting particle
system by the effective resistance between x and y w.r.t. the random walk process.

Theorem (MPL, IP/EX (C. ECP ’17))

1

2

∫
[f (ηxy )− f (η)]2 dν(η) ≤ Reff(x , y)EIP(f ), f : S|V | → R,

1

2

∫
[f (ηxy )− f (η)]2 dνα(η) ≤ Reff(x , y)EEX(f ), f : {0, 1}V → R.

1
2

3

4

5 6

7

8

9
1

2

3

4

5 6

7

8

9

MPL bounds the energy cost by “optimizing electric flow over all paths connecting x and y .”
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MPL & local averaging

x

x

For finite Λ ⊂ V , denote the average density over Λ by AvΛ[η] := |Λ|−1∑
z∈Λ η(z).

In the proof of the hydrodynamic limit for Markov processes, with generator TNLEX
N on a sequence of

graphs GN = (VN , EN ), we use that for every t > 0:

Replacement lemma

lim
ε↓0

lim
N→∞

EµN
[∣∣∣∣∫ t

0

(
η
N
s (x)− AvB(x,εN)[ηNs ]

)
ds

∣∣∣∣] = 0, x ∈ VN .

η(x)− AvB [η] =
1

|B|
∑
z∈B

(η(x)− η(z)) .

Estimating this cost using the variational characterization of the largest eigenvalue requires telescoping or
MPL. Works for resistance spaces; UNCLEAR if there is an analog of this for dspec ≥ 2.
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Two-point correlation functions, nonequilibrium

• µN
ss: unique invariant measure for 5NLbEX

N , b = 1.

• Steady-state density: ρNss(x) = E
µNss

[η(x)].

• Steady-state correlation: φN
ss(x, y) = E

µNss
[(η(x)− ρNss(x))(η(y)− ρNss(y))].

Related to the local time for two particles in EX to stay adjacent to each other.

• In 1D, φN
ss(x, y) is exactly a multiple of the Green’s function for RW, − 1

N−1 GN (x, y).

• How to find φN
ss(x, y) on SG? Or on a general graph?

Poisson’s eqn on the product graph


∆Nφ

N
ss(x, y) = 1{x∼y}5N

(
ρ
N
ss(x) + ρ

N
ss(y)− 2ρNss(x)ρNss(y)− 2φN

ss(x, y)
)
, x, y ∈ VN \ V0, x 6= y ,

∆Nφ
N
ss(x, x) = 2 · 5N

∑
y∼x

(
φ
N
ss(x, y)− χ

(
ρ
N
ss(x)

))
, x ∈ VN \ V0,(

(∂⊥N φ
N
ss)(x, ·)

)
(a) =

(
(∂⊥N φ

N
ss)(·, x)

)
(a) = − 5N

3N
λΣ(a)φN

ss(x, a), a ∈ V0.

Source term is nonzero only if x and y are adjacent.
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Two-point correlation functions, nonequilibrium

• µN
ss: unique invariant measure for 5NLbEX

N , b = 1.

• Steady-state density: ρNss(x) = E
µNss

[η(x)].

• Steady-state correlation: φN
ss(x, y) = E

µNss
[(η(x)− ρNss(x))(η(y)− ρNss(y))].

Related to the local time for two particles in EX to stay adjacent to each other.

• In 1D, φN
ss(x, y) is exactly a multiple of the Green’s function for RW, − 1

N−1 GN (x, y).

• How to find φN
ss(x, y) on SG? Or on a general graph?

“Invert the Laplacian” to solve for the correlation (in terms of the Green’s function GN )

φ
N
ss(x, y) = − 5N

|VN |2
∑

x′∈VN

∑
y′∼x′

GN (x, x′)GN (y , y ′)(ρNss(x′)− ρNss(y ′))2

+
1

|VN |
GN (x, y)

(
χ(ρNss(x)) + χ(ρNss(y))

)
− 2

|VN |2
∑
a∈V0

λΣ(a)GN (x, a)GN (y , a)χ(ρNss(a))

− 5N

|VN |2
∑

x′∈VN

∑
y′∼x′

φ
N
ss(x′, y ′)

[
GN (x, x′)− GN (x, y ′)

] [
GN (y , x′)− GN (y , y ′)

]
.
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Two-point correlation functions, nonequilibrium

• µN
ss: unique invariant measure for 5NLbEX

N , b = 1.

• Steady-state density: ρNss(x) = E
µNss

[η(x)].

• Steady-state correlation: φN
ss(x, y) = E

µNss
[(η(x)− ρNss(x))(η(y)− ρNss(y))].

Related to the local time for two particles in EX to stay adjacent to each other.

• In 1D, φN
ss(x, y) is exactly a multiple of the Green’s function for RW, − 1

N−1 GN (x, y).

• How to find φN
ss(x, y) on SG? Or on a general graph?

After some estimates we get

Lemma
There exists a positive constant C = C(ρss) such that for all N and x, y ∈ VN ,

|φN
ss(x, y)| ≤ C

|VN |
max

GN (x, y), sup
(x′,y′)∈V 2

N
:x′∼y′

GN (x, x′)GN (y , y ′)

.
Correlation scales as (inverse volume)×(Green’s function for RW).
This Lemma (and its time-dependent version) is needed to establish tightness/convergence of the density
fluctuation field in non-equilibrium.
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Summary, and Thank you!

Reservoir

λ+(a1)λ−(a1)

Reservoir

λ+(a0)λ−(a0)

Reservoir

λ+(a2)λ−(a2)

5NLbEX
N = 5N

(
LEX
N +

1

bN
Lboun
N

)
.

Symmetric exclusion process with slowed boundary on the
Sierpinski gasket

Dirichlet (b < 5
3 ), Robin (b = 5

3 ), Neumann (b > 5
3 )

Equilibrium ⇔ λ+(a) = λ+ and λ−(a) = λ− for all a ∈ V0. (Otherwise, nonequilibrium.)

• (Non)equilibrium density hydrodynamic limit (DRNX) [C.–Gonçalves ’19]

• Ornstein-Uhlenbeck limit of equilibrium density fluctuations (DRNX). [C.–Gonçalves ’19]

• Large deviations principle for the (non)equilibrium density (DX) [C.–Hinz ’19+]

• Hydrostatic limit, scaling limit of nonequilibrium density fluctuations (DXRN?).
[C.–Franceschini–Gonçalves–Menezes ’19+]

Future directions

• Generalization to any resistance space (with a good theory of boundary-value problems).

• Incorporate asymmetry in the exclusion jump rates → microscopic derivation of stochastic Burgers’
equation on resistance spaces.
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