Laplacian growth & sandpiles on the Sierpinski gasket

Limit shape universality, fluctuations & beyond

Joe P. Chen

Department of Mathematics Colgate University Hamilton, NY

Probability & Statistical Physics Seminar Department of Mathematics The University of Chicago April 26, 2019

SAC

This talk gives a unified treatment of the following 3 papers:

 Internal DLA on Sierpinski gasket graphs. JPC, Wilfried Huss, Ecaterina Sava-Huss, and Alexander Teplyaev. arXiv:1702.04017. To appear in "Analysis & Geometry on Graphs & Manifolds," London Mathematical Society Lecture Notes, Cambridge University Press (2019+).

- Divisible sandpiles on Sierpinski gasket graphs. Wilfried Huss and Ecaterina Sava-Huss. arXiv: 1702.08370. Fractals (2019).
- Laplacian growth & sandpiles on the Sierpinski gasket: limit shape universality & exact solutions.

JPC and Jonah Kudler-Flam. arXiv:1807.08748. Under review at Ann. Inst. Henri Poincaré Comb. Phys. Interact. (2019+).

Also many thanks to:

Lionel Levine*, Bob Strichartz (and his REU students), LEGO, and Super Mario Bros.

*Lionel suggested this problem to me in 2012.

3

< ロ > < 同 > < 三 > < 三 >

Laplacian growth on lattices and graphs

-

< □ > < 🗇 >

DQC

3/36

æ

Internal diffusion-limited aggregation (IDLA)

Fix a distinguished vertex o. Set $\mathcal{I}(0) = \emptyset$.

For $n \ge 1$, define inductively $\mathcal{I}(n) := \mathcal{I}(n-1) \cup \{X_{\tau(\mathcal{I}(n-1)^c)}^{(n)}\}$, where $X^{(i)}$ are i.i.d. random walks started from o, and $\tau(A)$ is the first hitting time of A.

Rotor walk (derandomized random walk)

< □ > < 🗇 >

Sac

Rotor-router aggregation

Fix a distinguished vertex *o*. Set $\mathcal{R}(0) = \emptyset$. For $n \ge 1$, define inductively $\mathcal{R}(n) := \mathcal{R}(n-1) \cup \{Y_{\tau(\mathcal{R}(n-1)^c)}^{(n)}\}$, where $Y^{(i)}$ are **rotor walks** started from *o*, and $\tau(A)$ is the first hitting time of *A*. [Note that the rotor environment evolves in time!]

Divisible sandpiles

< □ > < 🗇 >

DQC

Abelian sandpiles

< □ > < 🗇 >

Э

DQC

IDLA Rotor-router Abelian sandpiles

- Characterize the limit shapes (and fluctuations about the scaling limit) in each of the models.
- Fix a locally finite graph, and run all the growth models starting from *o*. Do the limit shapes coincide? (Limit shape universality [Levine-Peres '17])
- Abelian sandpile model: can also study the sandpile patterns! Does there exist a limit sandpile pattern? Other observables?

Э

イロト イポト イヨト イヨト

Limit shapes for Laplacian growth & sandpiles

 \mathbb{Z}^d $(d \ge 2)$ For all models: Launch $|B_o(n)|$ chips from o.

Model	Shape theorem/conjecture							
IDLA	In/out-radius {	$ \left\{ \begin{array}{ll} n \pm \mathcal{O}(\log n), & d = 2\\ n \pm \mathcal{O}(\sqrt{\log n}), & d \ge 3 \end{array} \right\} \alpha_{,\beta,\gamma,\delta} $						
Rotor-router aggregation	In-radius $n - c \log n$, out-radius $n + c' \log n \kappa, \ell$							
Divisible sandpiles	In-radius $n - c$, out-radius $n + c'^{\kappa}$							
Abolian candnilos	$(d=2)$ Limit shape closer to a dodecagon than Euc ball $^{\kappa}$							
Abenan sandpiles	Rigorous upper/lower estimates available (with a gap) κ .							

$^{\alpha}$ Lawler-Bramson-Griffeath '92

^β Lawler '95

- γ Asselah–Gaudillière '13 (2x)
- Jerison-Levine-Sheffield '13. '14
- κ Levine–Peres '09
- Levine-Peres '17
- ^{*L*} Fev–Levine–Peres '10

Levine-Peres, "Laplacian growth, sandpiles, and scaling limits." Bull. Amer. Math. Soc. (2017).

-

Not all 4 models have the same limit shape on \mathbb{Z}^d , d > 2.

Sac

Sierpinski gasket (and two possible approximations)

The usual approximation

Sierpinski arrowhead curve (space-filling)

Sac

What makes the Sierpinski gasket so special?

Geometry

- Self-similarity
- Discrete scale invariance
- Finite ramification: connected components separated by cut points
- Local (D₃) symmetries
- Special properties of spheres (centered at o)

Analysis & Probability [Kusuoka, Barlow, Perkins, Kigami, Strichartz, ...]

• Robust understanding of potential theory: random walk estimates, Green's function.

What makes the Sierpinski gasket so special?

Geometry

- Self-similarity ⇒ Volume-doubling
- Discrete scale invariance ⇒ (arithmetic) renewal theorem applies
- Finite ramification: connected components separated by cut points \Rightarrow spatial "independence"
- Local (D_3) symmetries \Rightarrow Symmetries in Laplacian growth
- Special property of spheres (centered at o) \Rightarrow Sharp error control of shape boundary

Analysis & Probability [Kusuoka, Barlow, Perkins, Kigami, Strichartz, ...]

- Robust understanding of potential theory: random walk estimates, Green's function.
 - \Rightarrow Harmonic measure is (nearly) uniform on spheres

Inner boundary of A: $\partial_I A := \{x \in A : \exists y \in A^c, x \sim y\}.$

Lemma. For every
$$k \ge 1$$
, $b_k := |B_o(k)| - \frac{1}{2} |\partial_l B_o(k)| = |B_o(k-1)| + |\partial_l B_0(k-1)|$.

DQC

For divisible sandpiles

- Odometer function $u: V \to \mathbb{R}_+$. u(x) counts the total amount of mass emitted from vertex x.
- Initial mass configuration μ_0 , odometer $u \Rightarrow$ get final mass configuration $\mu = \mu_0 + \Delta u$.
- Least action principle

$$u(x) = \inf\{w(x) \mid w : V \to \mathbb{R}_+ \text{ satisfies } \mu_0 + \Delta w \leq 1\}$$

A discrete obstacle problem. Works for any graph, but may not be easy to solve in practice.

• Thanks to the abelian property, there is an easier approach.

Lemma. Let $u_*: V \to \mathbb{R}_+$, $\mathcal{A}_* := \{x \in V : u_*(x) > 0\}$ and $\mu_* := \mu_0 + \Delta u_*$. If \mathcal{A}_* is finite; $\mu_*(x) = 1$ for all $x \in \mathcal{A}_*$; and $\mu_* \leq 1$, then $u = u_*$.

• Analogous versions of odometer and LAP for: rotor-router aggregation (change Δ to the stack Laplacian Δ_{ρ}), abelian sandpiles (functions w must be \mathbb{Z} -valued).

Э

(ロ) (同) (三) (三)

Theorem (Huss-Sava-Huss '17)

Starting from $\mu_0 = b_n \mathbf{1}_o$, the final divisible sandpile configuration is given by

$$\mu(x) = \begin{cases} 1, & \text{if } x \in B_o(n) \setminus \partial_l B_o(n) \\ 1/2, & \text{if } x \in \partial_l B_0(n), \\ 0, & \text{otherwise.} \end{cases}$$

The sandpile cluster $S(b_n)$ equals $B_o(n-1)$.

Corollary

For any $m \ge 0$, let $n_m = \max\{k \ge 0 : b_k \le m\}$. Then the sandpile cluster S(m) on SG with initial mass m at o satisfies $B_o(n_m - 1) \subset S(m) \subset B_o(n_m)$.

< ロ > < 同 > < 回 > < 回 >

Heuristic. Using the divisible sandpile shape/odometer, one can gain good control of shape/odometer for RRA & IDLA.

How is this heuristic used in practice?

イロト イポト イヨト イヨト

Э

Heuristic. Using the divisible sandpile shape/odometer, one can gain good control of shape/odometer for RRA & IDLA.

How is this heuristic used in practice?

An exact fast simulation algorithm [Friedrich-Levine, Random Structures Algorithms '13]

- Input an approximate odometer u_1 , get $\sigma_1 = \sigma_0 + \Delta_{\rho} u_1$.
- **2** Correction #1: Fire hills and unfire holes in σ_1 , return σ_2 .
- **(a)** Correction #2: Reverse cycle-popping in σ_2 [*cf.* Wilson's algorithm '96], return correct config/odometer.

Proof. Least action principle.

Note. Δ_{ρ} is the stack Laplacian which depends on the rotor mechanism ρ , and is in general a nonlinear operator.

Sar

イロト イポト イヨト イヨト

An exact fast simulation algorithm [Friedrich-Levine, Random Structures Algorithms '13]

- Input an approximate odometer u_1 , get $\sigma_1 = \sigma_0 + \Delta_{\rho} u_1$.
- **2** Correction #1: Fire hills and unfire holes in σ_1 , return σ_2 .
- Orrection #2: Reverse cycle-popping in σ₂ [cf. Wilson's algorithm '96], return correct config/odometer.

Proof. Least action principle.

Note. Δ_{ρ} is the stack Laplacian which depends on the rotor mechanism ρ , and is in general a nonlinear operator.

- Dramatic speed-up in simulating RRA & IDLA (vs. brute-force inductive aggregation).
- The closer u_1 is to the correct odometer, the fewer corrections are needed.
- Luckily for us: When choosing u_1 to be the divisible sandpile odometer on SG, the algorithm works to prove a sharp rotor-router shape theorem on SG!

< ロ > < 同 > < 回 > < 回 >

11/36

Theorem (C.-Kudler-Flam '18)

Let $n_m = \max\{k \ge 0 : b_k \le m\}$. Then for any periodic simple rotor mechanism,

 $B_o(n_m-2) \subset \mathcal{R}(m) \subset B_o(n_m), \quad \forall m \in \mathbb{N}.$

Numerics confirms that the bounds are sharp.

< ロ > < 同 > < 回 > < 回 >

DQC

3

Theorem (C.–Kudler-Flam '18)

Let $n_m = \max\{k \ge 0 : b_k \le m\}$. Then for any periodic simple rotor mechanism,

$$B_o(n_m-2) \subset \mathcal{R}(m) \subset B_o(n_m), \quad \forall m \in \mathbb{N}.$$

Proof idea. Start RRA with b_n particles. Use the divisible sandpile odometer u_n^{DS} as the input odometer into the F-L algorithm, then correct the errors, which takes place predominantly on the boundary.

$$\Delta_{\rho} u_n^{\mathrm{DS}}(x) \in \begin{cases} \{0, 1, 2\}, & \text{if } x \in S_o(n) \setminus \partial_l B_o(n), \\ \{0, 1\}, & \text{if } x \in \partial_l B_o(n), \\ \{0\}, & \text{if } x \notin B_0(n). \end{cases}$$

Here $S_o(n) = B_o(n) \setminus B_o(n-1)$.

Sar

3

Theorem (C.-Kudler-Flam '18)

Let $n_m = \max\{k \ge 0 : b_k \le m\}$. Then for any periodic simple rotor mechanism,

$$\mathsf{B}_o(n_m-2)\subset \mathcal{R}(m)\subset \mathsf{B}_o(n_m), \quad \forall m\in\mathbb{N}.$$

Proof idea. Start RRA with b_n particles. Use the divisible sandpile odometer u_n^{DS} as the input odometer into the F-L algorithm, then correct the errors, which takes place predominantly on the boundary. An inductive proof in 2 acts:

() "Fill the bulk": Rotor particles cannot overrun $B_o(n+1)$.

2 "Pull the marionette:" every vertex in $B_o(n)$ must be occupied.

< ロ > < 同 > < 回 > < 回 >

For every $\epsilon > 0$,

$$B_o(n(1-\epsilon)) \subset \mathcal{I}(|B_o(n)|) \subset B_o(n(1+\epsilon))$$

holds for all sufficiently large n, with probability 1.

DQC

<ロト <回ト < 三ト < 三ト

For every $\epsilon > 0$,

$$B_o(n(1-\epsilon)) \subset \mathcal{I}(|B_o(n)|) \subset B_o(n(1+\epsilon))$$

holds for all sufficiently large n, with probability 1.

Inner bound proof idea.

• Establish a mean value inequality for the Green's function killed upon exiting $B_o(n)$.

$$\frac{1}{|B_o(n)|}\sum_{y\in B_o(n)}G^n(y,z)\leq G^n(o,z).$$

- Green's function G(x, y) and exit time $\mathbb{E}_{x}[\tau_{B_{x}(r)}]$ estimates: well-known on SG.
- Implement the above into the machinery of Lawler-Bramson-Griffeath '92.

イロト イポト イヨト イヨト

Sac

For every $\epsilon > 0$,

$$B_o(n(1-\epsilon)) \subset \mathcal{I}(|B_o(n)|) \subset B_o(n(1+\epsilon))$$

holds for all sufficiently large n, with probability 1.

Inner bound proof idea.

Define

$$h_n(z) = |B_o(n)|G^n(o,z) - \sum_{y \in B_o(n)} G_n(y,z).$$

Then h_n solves the Dirichlet problem

$$\begin{cases} \Delta h_n = 1 - |B_o(n)| \mathbf{1}_o, & \text{on } B_o(n), \\ h_n = 0, & \text{on } (B_o(n))^c. \end{cases}$$

- Green's function G(x, y) and exit time $\mathbb{E}_{x}[\tau_{B_{x}(r)}]$ estimates: well-known on SG.
- Implement the above into the machinery of Lawler-Bramson-Griffeath '92.

イロト イポト イヨト イヨト

Sac

13/36

For every $\epsilon > 0$,

$$B_o(n(1-\epsilon)) \subset \mathcal{I}(|B_o(n)|) \subset B_o(n(1+\epsilon))$$

holds for all sufficiently large n, with probability 1.

Inner bound proof idea.

Define

$$h_n(z) = |B_o(n)|G^n(o,z) - \sum_{y \in B_o(n)} G_n(y,z).$$

Divisible sandpile odometer problem

$$\begin{cases} \Delta u_n = 1 - |B_o(n)|\mathbf{1}_o, & \text{on } S(n), \\ u_n = 0, & \text{on } (S(n))^c. \end{cases}$$

- Green's function G(x, y) and exit time $\mathbb{E}_{x}[\tau_{B_{x}(r)}]$ estimates: well-known on SG.
- Implement the above into the machinery of Lawler-Bramson-Griffeath '92.

イロト イポト イヨト イヨト

Sac

For every $\epsilon > 0$,

```
B_o(n(1-\epsilon)) \subset \mathcal{I}(|B_o(n)|) \subset B_o(n(1+\epsilon))
```

holds for all sufficiently large n, with probability 1.

Outer bound proof idea.

• Adapt the algorithm of Duminil-Copin-Lucas-Yadin-Yehudayoff '13, by pausing the IDLA process when *either* the particle attaches to the aggregate *or* when it exits $B_o(n_j)$, where the n_j is defined inductively

 \rightarrow using the *abelian* property of the IDLA process.

- With the following inputs, we can then implement the algorithm and use the inner bound to show there are no long outward tentacles, and hence control the outer bound.
 - Geometric input: Volume growth of balls and of annuli in SG.
 - ▶ Potential theoretic input: Show that the killed Green's function $G^n(x, y) \ge C(\epsilon) > 0$ for all $x, y \in B_o((1 \epsilon)n)$, thanks to the elliptic Harnack inequality (proved by Kigami '01 on SG) and a chaining argument.

3

13/36

Sierpinski gasket (SG) For all models: Launch from the corner vertex o.

Model	Initial chip #	Shape theorem/conjecture
IDLA	$ B_o(n) $	In/out-radius $n \pm \mathcal{O}(\sqrt{\log n})^{1,2}$
RRA	т	In-radius $n_m - 2$, out-radius n_m^2
DSM	т	In-radius $n_m - 1$, out-radius n_m ³
ASM	т	???

 1 C.–Huss–Sava-Huss–Teplyaev '17 2 C.–Kudler-Flam '18

³ Huss–Sava-Huss '17

イロト イポト イヨト イヨト

Э

Sierpinski gasket (SG) For all models: Launch from the corner vertex o.

Model	Initial chip $\#$	Shape theorem/conjecture
IDLA	$ B_o(n) $	In/out-radius $n \pm \mathcal{O}(\sqrt{\log n})^{1,2}$
RRA	т	In-radius $n_m - 2$, out-radius n_m^2
DSM	т	In-radius $n_m - 1$, out-radius n_m ³
		Receiving set is a ball $B_o(r_m)$
ASM	т	$r_m = m^{1/d_H}[\mathcal{G}(\log m) + o(1)]$ as $m o \infty^{-2}$
		(\mathcal{G} is an explicit (log 3)-periodic function)

```
    <sup>1</sup> C.-Huss-Sava-Huss-Teplyaev '17
    <sup>2</sup> C.-Kudler-Flam '18
    <sup>3</sup> Huss-Sava-Huss '17
```

Theorem (Limit shape universality on SG)

On SG, clusters in all 4 single-source growth models fill balls in the graph metric.

#1 nontrivial non-tree state space where limit shape universality has been proven.

Sac

イロト イヨト イヨト

< □ > < 🗇 >

-

ㅋ ㅋ

DQC

Sandpile growth on \mathbb{Z}^2 : Fractals in a sandpile

Lay *m* chips at the origin and stabilize. Rescale the lattice/cluster by $m^{1/d}$ in length.

- Scaling limit of the patterns in weak-* $L_{\infty}(\mathbb{R}^d)$. [Pegden–Smart '11]
- Apollonian gaskets in the pattern. [Numerically observed since 90s, proved by Levine–Pegden–Smart '12, '14. Latter is published in Ann. Math. '17] \rightarrow Odometer function satisfies a "sandpile PDE" (integer superharmonic matrices).
- Stability of patterns [Pegden–Smart '17]
- The limit shape is NOT an Euclidean sphere, but rather close to a dodecagon. [No proofs yet]

< ロ > < 同 > < 三 > < 三 >

nan

Sandpile growth on \mathbb{Z}^2 : Fractals in a sandpile

Lay *m* chips at the origin and stabilize. Rescale the lattice/cluster by $m^{1/d}$ in length.

• Identity element of the sandpile group on a sinked finite square lattice.

< ロ > < 同 > < 回 > < 回 >

Sar

Э

Apollonian circle packings / gasket

By Time3000 [GFDL or CC BY-SA 4.0-3.0-2.5-2.0-1.0], from Wikimedia Commons https://commons.wikimedia.org/wiki/File:Apollonian_gasket.svg

Joe P. Chen (Colgate)

UChicago Probability (Apr '19) 17 / 36

DQC

イロト イボト イヨト イヨト

Q. Is it possible to see fractal patterns in the sandpile on a fractal?

• It does not matter whether to solve it on the 1-sided SG or the 2-sided SG (symmetry).

Key observations from simulations:

- Sandpile patterns exhibit periodicity.
- The set of all vertices receiving at least 1 chip is ALWAYS a ball in the graph metric.
- Radial explosions occur at periodic values of m. (Not seen on \mathbb{Z}^d or trees!)

イロト イポト イヨト イヨト

Key observations from simulations:

- Sandpile patterns exhibit periodicity.
- The set of all vertices receiving at least 1 chip is ALWAYS a ball in the graph metric.
- Radial explosions occur at periodic values of m. (Not seen on \mathbb{Z}^d or trees!)

Numerical work turned into insights & theorems!

- [Fairchild-Haim-Setra-Strichartz-Westura, arXiv:1602.03424] identified the sandpile growth mechanism.
- [C.-Kudler-Flam, arXiv:1807.08748] solved the sandpile growth problem EXACTLY.

• Major jumps at $4 \cdot 3^n$, $6 \cdot 3^n$, $8 \cdot 3^n$, $10 \cdot 3^n$. Period = $2 \cdot 3^n$.

• Radial jumps occur at well-defined values of m (do not get denser as n increases).

Sar

As a responsible mathematician, the best thing I can do is to prove...

Theorem (C.-Kudler-Flam '18) Jump size Δr_m 12 40 10 10 30 10² • ۰ $3^{-n}m$ 8 £ 10¹ 206 10 10 10.1 100 10¹ 10² 10³ 104 3 6 n

• Major jumps at $4 \cdot 3^n$, $6 \cdot 3^n$, $8 \cdot 3^n$, $10 \cdot 3^n$. Period = $2 \cdot 3^n$.

• Radial jumps occur at well-defined values of m (do not get denser as n increases).

-

An important observation from the numerics is

Remainder Lemma. $R(m) := r(3m) - 2r(m) \in \{-1, 0, +1\}$ for all *m*.

Joe P. Chen (Colgate)

1

< D > < B > < B >

nac

Top-level abelian sandpile results: radial scaling limit

Remainder Lemma. $R(m) := r(3m) - 2r(m) \in \{-1, 0, +1\}$ for all *m*.

Assume the Remainder Lemma holds. Recall

Theorem (Renewal theorem [cf. Feller; Falconer, Techniques in fractal geometry])

Let $g : \mathbb{R} \to \mathbb{R}$, and μ be a Borel probability measure supported on $[0, \infty)$, Suppose:

•
$$\lambda := \int_0^\infty t \, d\mu(t) < \infty.$$

• $\int_0^\infty e^{-at} \, d\mu(t) < 1$ for every $a > 0$

9 g has a discrete set of discontinuities, and there exist $c, \alpha > 0$ such that $|g(t)| \le ce^{-\alpha|t|}$ for all $t \in \mathbb{R}$.

Then there is a unique $f \in \mathcal{F}$ which solves the renewal equation

$$f(t) = g(t) + \int_0^\infty f(t-y) \, d\mu(y) \qquad (t \in \mathbb{R})$$

and the solution is

$$f(t) = \sum_{k=0}^{\infty} \left(g * \mu^{*k}\right)(t).$$

Joe P. Chen (Colgate)

イロト 人間 ト イヨト イヨト

Top-level abelian sandpile results: radial scaling limit

Remainder Lemma. $R(m) := r(3m) - 2r(m) \in \{-1, 0, +1\}$ for all *m*.

Theorem (Renewal theorem [cf. Feller; Falconer, Techniques in fractal geometry])

Renewal equation

$$f(t) = g(t) + \int_0^\infty f(t-y) \, d\mu(y) \qquad (t \in \mathbb{R})$$

with solution

$$f(t) = \sum_{k=0}^{\infty} \left(g * \mu^{*k}\right)(t).$$

 μ is said to be τ -arithmetic if $\tau > 0$ is the largest number such that $\operatorname{supp}(\mu) \subset \tau \mathbb{Z}$. If no such τ exists, μ is said to be non-arithmetic.

• If μ is τ -arithmetic, then for all $y \in [0, \tau)$,

$$\lim_{k\to\infty}f(k\tau+y)=\frac{\tau}{\lambda}\sum_{j=-\infty}^{\infty}g(j\tau+y).$$

• If μ is non-arithmetic, then

$$\lim_{t\to\infty}f(t)=\frac{1}{\lambda}\int_{-\infty}^{\infty}g(y)\,dy.$$

Remainder Lemma. $R(m) := r(3m) - 2r(m) \in \{-1, 0, +1\}$ for all *m*.

Theorem (Renewal theorem [cf. Feller; Falconer, Techniques in fractal geometry])

• If μ is τ -arithmetic, then for all $y \in [0, \tau)$,

$$\lim_{k\to\infty}f(k\tau+y)=\frac{\tau}{\lambda}\sum_{j=-\infty}^{\infty}g(j\tau+y).$$

For us, $f(t) = e^{-t/d_H} r(e^t)$, $g(t) = e^{-t/d_H} R(e^t)$, $\mu = \delta_{\log 3}$.

Theorem (Radial scaling limit)

$$r(x) = x^{1/d_H}[\mathcal{G}(\log x) + o(1)]$$
 as $x \to \infty$,

where $d_H = \log_2 3$ is the Hausdorff dimension of SG, and G is a log 3-periodic function.

Sac

イロト 不得 トイヨト イヨト 二日

Theorem (Radial scaling limit)

$$r(x) = x^{1/d_H}[\mathcal{G}(\log x) + o(1)] \quad as x \to \infty,$$

where $d_H = \log_2 3$ is the Hausdorff dimension of SG, and G is an explicit non-constant log 3-periodic function. (This uses a separate argument.)

Best possible limit theorem on a state space with discrete scale invariance

To come: The radial oscillations are connected to changes in the sandpile patterns.

イロト イロト イヨト イ

Sac

Proposition. For each $m \geq 12$, there exists a unique $(n, m') \in \mathbb{N}^2$ such that

$$(m\mathbb{1}_o)^\circ = \left(\underbrace{\begin{array}{c} & & \\$$

From this follows the radial equation $r_m = 2^n + r_{m'-2}$.

イロト イヨト イヨト

3

Proposition. For each $m \ge 12$, there exists a unique $(n, m') \in \mathbb{N}^2$ such that

$$(m\mathbb{1}_o)^\circ = \left(\underbrace{\swarrow_{\eta \in \mathcal{R}_n}}_{\eta \in \mathcal{R}_n}\right)^\circ \subseteq G_{n+1}.$$

From this follows the radial equation $r_m = 2^n + r_{m'-2}$.

Key idea: systematic topplings in waves

- \mathcal{R}_n is the sandpile group of G_n (= class of recurrent sandpile configs on G_n) with two sink vertices (cut points) ∂G_n . It is an abelian group under \oplus , addition of chips followed by stabilization.
- Stabilize $m1_o$ in $G_n \setminus \partial G_n$ to obtain the config $\eta \in \mathcal{R}_n$, pausing the excess m' chips on ∂G_n (sink) \rightarrow using the abelian property.
- Then topple the excess chips on ∂G_n (source). By Dhar's multiplication by identity test (a Laplacian identity), with each topple on ∂G_n , η is unchanged, while the # of chips on ∂G_n decrements in steps of 2, until 2 or 3 chips remain.

Using this Proposition, we can inductively prove: cluster shape is a ball; periodicity; etc.

イロト 不得 トイヨト イヨト 二日

This explains the $(2 \cdot 3^n)$ -periodicity in the sandpile growth (and the patterns restricted to G_n).

< ロ > < 同 > < 回 > < 回 >

э

DQC

Identity element of the sandpile group of SG

Identity element of the sandpile group of SG

The main explosions at $4 \cdot 3^n$: transition from M_n to e_n

Proposition.

$$((4 \cdot 3^{n} - 2)\mathbb{1}_{o})^{\circ} = \underbrace{\begin{pmatrix} 1 \\ M_{n} \\ 1 \end{pmatrix}}_{((4 \cdot 3^{n})\mathbb{1}_{o})^{\circ} = \underbrace{\begin{pmatrix} b_{n} \\ e_{n} \\ e_{n} \\ b_{n} \end{pmatrix}}_{b_{n}}^{\circ}, \text{ where } b_{n} = \frac{3}{2}(3^{n-1} + 1).$$

Proof of the induction step.

Proof (cont.).

The last step depends on the following "reflection lemma," using the axial symmetry of SG:

Also note $b_{n+1} = b_n + 3^n$.

イロト イボト イヨト イヨト

2

DQC

An axial reflection lemma (SG with one sink)

$$e_n^{(o)}$$
 is the id element of $\mathcal{R}_n^{(o)}$; $\partial G_n = \{x, y\}$.

Lemma. Let $\eta \in \mathcal{R}_n^{(o)}$ be such that $\eta = e_n^{(o)} \oplus \alpha \mathbb{1}_x \oplus \beta \mathbb{1}_y$ for some $\alpha, \beta \in \mathbb{N}_0$. Let $k_x, k_y \in \mathbb{N}_o$ solve the system of equations

$$\begin{cases} \alpha + k_x = \beta + p_0 \cdot 3^n + p_1 \cdot 3^{n+1} \\ \beta + k_y = \alpha + p_0 \cdot 3^n + p_2 \cdot 3^{n+1} \end{cases}$$

for some $p_0, p_1, p_2 \in \mathbb{Z}$ (which come from the toppling identities). Then

where $\tilde{\eta} = e_n^{(o)} \oplus \beta \mathbb{1}_x \oplus \alpha \mathbb{1}_y$ is the reflection of η across the axis of symmetry.

For the example on the previous slide:

$$\alpha = 2 \cdot 3^n, \ \beta = b_n - 2, \ k_x = b_n - 2, \ k_y = b_n - 1, \ p_0 = -1, \ p_1 = 1, \ p_2 = 0.$$

Sac

The fundamental sandpile diagram on SG

Proposition. For each $m \ge 12$, there exists a unique $(n, m') \in \mathbb{N}^2$ such that

$$(m\mathbb{1}_{o})^{\circ} = \left(\underbrace{\swarrow_{\eta \in \mathcal{R}_{n}}}_{\eta \in \mathcal{R}_{n}} \right)^{\circ} \subseteq G_{n+1}$$

From this follows the fundamental equation $r_m = 2^n + r_{m'-2}$.

Example: n = 3. Record values of m at which m' jumps.

$\frac{m}{3^n}$	m	m'	m - 2m'	Δr_m	$\frac{m}{3^n}$	т	m'	m - 2m'	Δr_m
4	108	15	78	2	8	216	69	78	1
$4\frac{2}{27}$	110	16	78	1	$8\frac{2}{27}$	218	70	78	
4 4	120	19	82		84	228	73	82	
$4\frac{2}{3}$	126	20	86		8 2/3	234	74	86	
5 ¹ / ₃	144	28	88	1	9 1	252	82	88	
6ັ	162	42	78	1	1Ŏ	270	96	78	1
$6\frac{2}{27}$	164	43	78		$10\frac{2}{27}$	272	97	78	
$6\frac{4}{3}$	174	46	82		10 ⁴	282	100	82	
6 ² / ₃	180	47	86		10 ² / ₃	288	101	86	
$7\frac{1}{3}$	198	55	88	1	$11\frac{1}{3}$	306	109	88	

3

DQC

イロト イヨト イヨト

m	m	m'	m - 2m'	Δr_m	$\frac{m}{3n}$	m	m'	m-2m'	Δr_m	$\frac{m}{3^n}$	m	m'	m-2m'	Δr_m
_3"	2	1	0	1	8	216	69	78	1	$6\frac{2}{3}$	1620	407	806	
	8	4	0	1	$8\frac{2}{27}$	218	70	78		$7\frac{1}{3}$	1782	487	808	1
		-	- 1		$8\frac{4}{9}$	228	73	82		8	1944	609	726	5
		n	= 1		82	234	74	86		8 2 35	1946	610	726	
4	12	3	6		91	252	82	88		84	2052	649	754	
$4\frac{2}{3}$	14	4	6	1	10	270	96	78	1	82	2106	650	806	2
6	18	6	6		$10\frac{2}{27}$	272	97	78		$9\frac{1}{3}$	2268	730	808	1
$6\frac{2}{3}$	20	7	6		$10\frac{4}{6}$	282	100	82		10	2430	852	726	1
8	24	9	6		$10\frac{2}{3}$	288	101	86		$10\frac{2}{35}$	2432	853	726	
823	26	10	6	1	111	306	109	88		10 4	2538	892	754	
10	30	12	6				n =	4		$10\frac{2}{3}$	2592	893	806	
$10\frac{2}{3}$	32	13	6		4	994	49	- 940	5	$11\frac{1}{3}$	2754	943	808	
		n	= 2		4.2	326	43	240				$\mathbf{n} = 0$	3	
4	36	6	24	1	44	360	55	250	1	4	2916	366	2184	22
42	38	7	24		42	378	56	266		4.2	2018	367	2184	
4	42	8	26		51	432	82	268	1	44	3240	487	2266	1
$5\frac{1}{3}$	48	10	28	1	6	486	123	240	4	42	3402	488	2426	4
6	54	15	24		6.2	488	124	240		51	3888	730	2428	4
$6\frac{2}{9}$	56	16	24	1	64	522	136	250		6	4374	1095	2184	13
623	60	17	26		62	540	137	266		$6^{2}_{$	4376	1096	2184	
$7\frac{1}{3}$	66	19	28		71	594	163	268	1	64	4698	1216	2266	1
8	72	24	24		8	648	204	240	2	62	4860	1217	2426	
82	74	25	24		82	649	205	240		71	5346	1459	2428	2
823	78	26	26		84	684	217	250		8	5832	1824	2184	8
$9\frac{1}{3}$	84	28	28	1	82	702	218	266	1	8.2	5834	1825	2184	
10	90	33	24		91	756	244	268		84	6156	1945	2266	
$10\frac{2}{9}$	92	34	24		10	810	285	240	1	82	6318	1946	2426	5
$10\frac{2}{3}$	96	35	26		$10\frac{2}{81}$	812	286	240		91	6804	2188	2428	2
$11\frac{1}{3}$	102	37	28		$10\frac{4}{8}$	846	298	250		10	7290	2553	2184	2
		n	= 3		$10\frac{5}{3}$	864	299	266		$10\frac{2}{36}$	7292	2554	2184	
4	108	15	78	2	$11\frac{1}{3}$	918	325	268		10 4	7614	2674	2266	
$4\frac{2}{27}$	110	16	78	1			n =	5		$10\frac{2}{3}$	7766	2675	2426	
44	120	19	82		4	972	123	726	11	$11\frac{1}{3}$	8262	2917	2428	
$4\frac{2}{3}$	126	20	86		4.2	974	124	726				n = 1		
51	144	28	88	1	44	1080	163	754	1	4	8748	1095	6558	44
6	162	42	78	1	42	1134	164	806	1	4.2	8750	1096	6558	14
$6\frac{2}{27}$	164	43	78		51	1296	244	808	2	44	9720	1459	6802	3
$6\frac{4}{9}$	174	46	82		6	1458	366	726	7	48	10206	1460	7286	7
$6\frac{2}{3}$	180	47	86		6.2	1460	367	726		51	11664	2188	7288	8
$7\frac{1}{3}$	198	55	88	1	64	1566	406	754		- 3 6	13122	3282	6558	25
					- 9	2.500	-00	101		-		1.000		20

 $\label{eq:Legend:matrix} \text{Legend:} \quad (m\mathbbm{1}_v)^\circ = \quad \left(\underbrace{\swarrow}_{\eta \ \in \ \overline{\mathbbm{n}}_n} \right)^\circ \ ; \ \#\{\text{chips in } \eta\} = m - 2m'.$

2

DQC

Detailed results: radial jumps

Theorem (Enumeration of radial jumps)

For
$$n \geq 3$$
 and $m \in [4 \cdot 3^n, 4 \cdot 3^{n+1})$, $(m \mathbb{1}_o)^\circ =$

$$\left(\underbrace{\begin{pmatrix} m' \\ n \in \mathcal{R}_n \\ m' \end{pmatrix}}_{m \in \mathcal{R}_{n+1}, \text{ where } m \mapsto m' \text{ is a} \right)^{\circ}$$

piecewise constant right-continuous function which has jumps indicated in the following table.

where $p \in \{0, 1, 2, 3\}$, and $b_n = |V(G_{n-1})| = \frac{3}{2}(3^{n-1} + 1)$.

Patterns associated to the jumps

An inductive proof—Sandpile block renormalization Configuration restricted to G_n is the gluing of 3 well-defined sandpile tiles. [What You See Is What You Get]

Patterns associated to the jumps

BUT there are two exceptions which cannot be explained by tiling arguments.

Sac

e_n : A fractal (Peano curve) within a fractal (SG)!

- The unique shortest blue path (a Peano curve formed by the concatenation of the first *n* Sierpinski arrowhead curves) of 3's connecting *o* to the sink *y*.
- What happens when 2 chips are added to o?
- Triggers a chain reaction of topplings down the Peano curve, all the way to y! This sends 1 extra chip to each sink vertex, which explains " $4 \cdot 3^n + 2$ " in the radial jump theorem.
- BUT ...

-

$e_n + 2$: Traps develop along the Peano curve

- Blotches of 1's and 2's ("traps") develop at well-defined locations, due to connections across vertices on the Peano curve.
- Best way to visualize this is to parametrize SG along the length of the Peano curve:

Sar

" $4\frac{4}{9} \cdot 3^n - 2$ ": Inability to overcome the traps

DQC

イロト イポト イヨト イヨト

The recursive radial formula implies the aforementioned Remainder Lemma.

Э

< ロ > < 同 > < 回 > < 回 >

Sac

Limit shapes for Laplacian growth & sandpiles

Sierpinski gasket (SG) For all models: Launch from the corner vertex o.

Model	Initial chip $\#$	Shape theorem/conjecture
IDLA	$ B_o(n) $	In/out-radius $n \pm \mathcal{O}(\sqrt{\log n})^{1,2}$
RRA	т	In-radius $n_m - 2$, out-radius n_m ²
DSM	т	In-radius $n_m - 1$, out-radius n_m ³
		Receiving set is a ball $B_o(r_m)$
ASM	т	$r_m = m^{1/d_H}[\mathcal{G}(\log m) + o(1)]$ as $m o \infty^{-2}$
		(\mathcal{G} is an explicit (log 3)-periodic function)

¹ C.-Huss-Sava-Huss-Teplyaev '17 ² C.-Kudler-Flam '18

³ Huss-Sava-Huss '17

Theorem (Limit shape universality on SG)

On SG, clusters in all 4 single-source growth models fill balls in the graph metric.

#1 nontrivial non-tree state space where **limit shape universality** has been proven.

Remark. Ahmed Bou-Rabee has a 2nd example (supercritical percolation cluster on \mathbb{Z}^2).

Sar

イロト イポト イヨト イヨト

The mathematical beyond: Open questions

- Fluctuation of IDLA on SG: $\mathcal{O}(\sqrt{\log n})$ per simulations
- Log-periodic radial oscillations: beautiful numerics, but proofs?

Figure: Sample average of the absolute value of the radial fluctuations about the expected radius.

- Other examples of state spaces on which limit shape universality holds? My (naive) conjecture: should hold on any planar nested fractal (as defined by Lindstrom)
- Change the initial condition: Single-source to (random) multi-source?
 cf. Abelian sandpile on Z² with initial Bernoulli 3-5 configuration (Bou-Rabee)

Thank you!