Problem 5: UConn men's basketball tourney chances

Starting on March 12, the UConn men's basketball team will play in the AAC Championship (at the XL Center in Hartford) for up to 3 single-elimination games. If UConn wins the 1st game, then it will play the 2nd game, and if it wins again, then it will play the 3rd and final game. However, a single loss will eliminate UConn from the AAC Championship.

Suppose UConn wins the 1st game with probability 0.6. Given that it wins the 1st game, the probability of winning the 2 nd game is 0.5 . And given that it wins the first 2 games, the probability of winning the 3 rd and final game is 0.4 .

Based on the outcome of the AAC Championship, a selection committee decides whether UConn advances to the NCAA tournament. By rule, if UConn wins all 3 games, then it advances to the tournament with probability 1 ("automatic bid"). If UConn wins 2 games (and loses the 3rd), the probability of advancing is 0.2 . If UConn wins fewer than 2 games, there is 0 probability of advancing.
(a) Draw a tree diagram, and find the probability that UConn advances to the NCAA tournament under the above scheme.
\qquad
(b) Given that UConn advances to the NCAA tournament, what is the probability that it did not win all 3 games in the AAC Championship? SIMPLIFY your numerical answer.
\qquad

Useful formulas:

$$
\begin{gathered}
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad\binom{n}{n_{1}, \cdots, n_{r}}=\frac{n!}{n_{1}!\cdots n_{r}!} \quad\left(\text { if } n_{1}+\cdots n_{r}=n\right) \\
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \quad(x, y \in \mathbb{R}, n \in \mathbb{N})
\end{gathered}
$$

(Bayes) If $\bigcup_{j=1}^{N} F_{j}=S$ and the F_{j} are mutually disjoint, then $P\left(F_{i} \mid E\right)=\frac{P\left(E \mid F_{i}\right) P\left(F_{i}\right)}{\sum_{j=1}^{N} P\left(E \mid F_{j}\right) P\left(F_{j}\right)}$.

